# Foreword

Thank you for choosing D200 Series Frequency inverter.

Before using it, please read this manual carefully so as to guarantee correct operation. Erroneous operation might result in malfunction, faults or shortened life span of the equipment, or even personal injury. Therefore, users are advised to read carefully this manual and abide by it during operation. The manual is a standard attached document. Please keep it for maintenance and repair in the future.

Aside from operation instructions, this manual also presents some wiring diagrams for your reference. If you have any difficulty or special demands for using the frequency inverter, please contact our offices or distributors. You may also contact the customer service centre of our head office for our quality service. The manual noted that its content might change without further notice.

Please confirm following content during unpackaging:

- 1. If the product is damaged during process of transportation, if parts are damaged and dropped, or if main body is bruised.
- 2. If rated value marked on nameplate is consistent with your order requirement, or if there are ordered Unit, acceptance certificate, operation manual and guarantee shed in package.

The Company strictly complies with quality system during production and packaging, for any inspection miss, please contact our Company or supplier for settlement.

# Content

| Foreword                                                    | I |
|-------------------------------------------------------------|---|
| Chapter 1 Safety Operation and Notices                      |   |
| 1.1 Examination and Acceptance                              |   |
| 1.2 Precautions for safe operation:                         | 1 |
| 1.3 Safety mark of frequency converter                      | 2 |
| Chapter 2 Product Information                               |   |
| 2.1 Nameplate data and naming rule                          |   |
| 2.2 Technical Specifications                                | 4 |
| 2.3 Product List                                            |   |
| 2.4 Appearance and installation size                        | 7 |
| 2.5 Routine maintenance                                     |   |
| Chapter 3 Installation and Connection of Frequency inverter |   |
| 3.1 Option of the Site and Space for Installation           |   |
| 3.2 Wiring of the Peripherals and Optional parts            |   |
| 3.3 Wiring of the main circuit                              |   |
| 3.4 Connection of control circuit                           |   |
| 3.5 Grounding                                               |   |
| Chapter 4 Keyboard Operation and Running                    |   |
| 4.1 Option of operating mode                                |   |
| 4.2 Test run and inspection                                 |   |
| 4.3 Operating method of keyboard                            |   |
| 4.4 Function Code Display Mode                              |   |
| Chapter 5 Tables of Function Parameters                     |   |
| 5.1 Group P0 - Basic Function                               |   |
| 5.2 Group P1 - Motor Control Parameter                      |   |
| 5.3 Group P2 - Input/Output Terminal Function               |   |
| 5.4 Group P3 - Programmable Function                        |   |
| 5.5 Group P4 - Pid Control And Communication Control        |   |
| 5.6 Group P5 - Keyboard Display                             |   |
| 5.7 Group P6 - Fault Display and Protection                 |   |
| 5.8 Group P7 - User Function Customization                  |   |
| 5.9 Group P8 - Manufacturer Function                        |   |
| 5.10 Group P9 - Monitoring Parameter                        |   |
| Chapter 6 Description of Parameters                         |   |
| 6.1 Group 0 - Basic Function                                |   |
| 6.2 Group P1 - Motor Control Parameter                      |   |
| 6.3 Group P2 - Input/Output Terminal Function               |   |
| 6.4 Group P3 - Programmable Function                        |   |
| 6.5 Group P4 - Pid Control And Communication Control        |   |
| 6.6 Group P5 - Keyboard Display                             |   |
| 6.7 Group P6 - Fault Display and Protection Control         |   |
| 6.8 Group P7 - User Function Customization                  |   |
| 6.9 Group P8 - Manufacturer Function                        |   |
| 6.10 Group P9 - Monitoring Parameter                        |   |

#### Content

| Chapter 7 Common Function and Application Case                |     |
|---------------------------------------------------------------|-----|
| 7.1 Common Function                                           |     |
| 7.2 Application Case                                          |     |
| Chapter 8 D200 Series Frequency Inverter RS-485 Communication | 164 |
| Chapter 9 Fault Handling                                      |     |
| 9.1 Frequency inverter Fault and Exclusion Measure            |     |
| 9.2 Motor Fault and Exclusion Measure                         |     |
| Appendix 1 Regular Maintenance and Inspection Methods         |     |
| Appendix 2 Guideline for Option of Optional parts             |     |

# **Chapter I Safe Operation and Notices**

Please read the manual carefully before install, operate, maintain or check D200 Series Frequency inverter.

To protect yourself, the equipment, and the property from any possible harm, please do read this chapter before using our D200 Series Frequency inverters. Precautions relevant to operation safety are categorized as "Warning" and "attention".



Warning



Attention

: Potentially dangerous condition, which maybe cause severe body injuries or dead if relevant requirement is ignored.

: Potentially dangerous condition, which maybe cause middle, light injuries or device damage if relevant requirement is ignored, it also applies to unsafe operation.

### **1.1 Examination and Acceptance**

Items to be examined are as follows:

| Items                                         | Note                                                         |
|-----------------------------------------------|--------------------------------------------------------------|
| 1. Does the model conform to your order?      | Check the Model indicated on the nameplate on one side       |
| 1. Does the model conform to your order?      | of the frequency inverter.                                   |
|                                               | Survey the external appearance of the frequency inverter     |
| 2. Is there any damage to the components?     | and make sure that no damage has occurred during             |
|                                               | transportation                                               |
| 2 Are the components properly festened?       | Remove the front cover and examine all visible               |
| 3. Are the components properly fastened?      | components with appropriate tools.                           |
| 4. Do you have the user's manual, the quality | Check for the user's manual, the quality certificate and the |
| certificate and the warranty claims form?     | warranty claims form                                         |

If any of the above items is problematic, please contact us or our distributors.

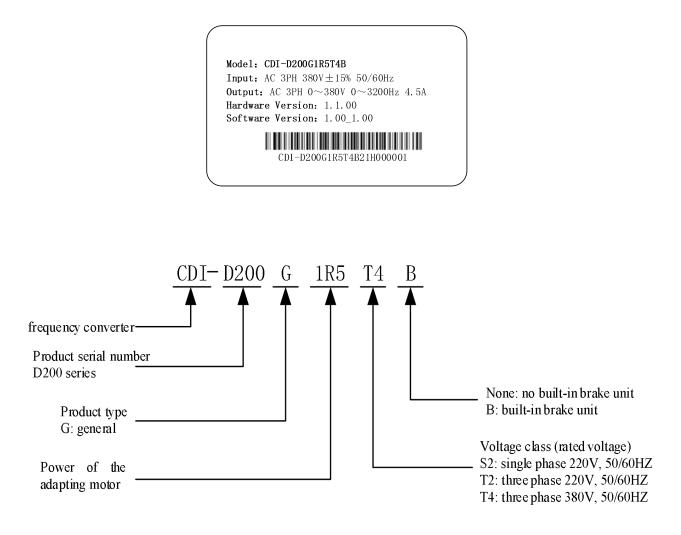
### **1.2 Precautions for safe operation**

|              | 1. Installation and maintenance should be performed by professional only.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | 2. Verify that rated voltage of the frequency inverter should conform with voltage level of AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              | power supply.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              | Otherwise it shall cause hurt to human body or fire accident.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              | 3. Do not make supply power of AC loop connect with outputting terminal U, V and W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              | The connection will damage converser, thus guarantee card should be nonserviceable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>_</b> ••• | 4. Only connect it to input power supply after the panel is well installed. Do not remove the                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Warning      | external lid when it is powered; otherwise it may cause electric shock.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              | 5. Forbid touching high voltage terminal inside the frequency inverter when it is powered on;                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              | otherwise, there is danger of electric shock.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              | 6. Because there is an amount of capacitance stored electric energy inside the frequency inverter,                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              | maintenance should be implemented at least 10 minutes after the power is off. At this time,                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              | charging indicator should be off thoroughly or positive or negative bus voltage is confirmed to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              | below 36V; otherwise there is danger of electric shock.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Warning      | <ul> <li>external lid when it is powered; otherwise it may cause electric shock.</li> <li>5. Forbid touching high voltage terminal inside the frequency inverter when it is powered otherwise, there is danger of electric shock.</li> <li>6. Because there is an amount of capacitance stored electric energy inside the frequency inverter maintenance should be implemented at least 10 minutes after the power is off. At this tic charging indicator should be off thoroughly or positive or negative bus voltage is confirmed to the power is off.</li> </ul> |

|                | 7. Do not turn on or off line and connector when the circuit is powered on; otherwise it can cause                                                                                              |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | hurt to human body.                                                                                                                                                                             |
|                | 8. Electric elements can be easily damaged by static electricity. Do not touch electric elements.                                                                                               |
|                | 9. This frequency inverter should not undergo voltage withstand test, which might result in                                                                                                     |
|                | damages to the semiconductor devices in it.                                                                                                                                                     |
|                | 10. Before switching on the power supply, please put the cover board in position. Otherwise,                                                                                                    |
|                | electric shock or explosion might occur.                                                                                                                                                        |
|                | 11. Never confuse the input terminals. Otherwise, explosion or damage to the property might                                                                                                     |
| Electro Static | occur.                                                                                                                                                                                          |
| Discharge      | 12. For frequency inverter of which storage period exceeds half year, please increase the input                                                                                                 |
|                | voltage gradually by using regulator, to prevent from electric shock and explosion.                                                                                                             |
| (ESD)          | 13. Do not operate the frequency inverter with wet hand; otherwise, there is danger of electric                                                                                                 |
|                | shock.                                                                                                                                                                                          |
|                | 14. All parts should be replaced by professional only. It is strictly prohibitive to remain stub or                                                                                             |
|                | metal object in machine, to prevent from fire.                                                                                                                                                  |
|                | 15. After replaced control board, please perform relevant parameter setting before operation to                                                                                                 |
|                | prevent from damage of materials.                                                                                                                                                               |
|                | 1. If the motor is used for the first time or has been in leisure for a long time, remember to check                                                                                            |
|                | its insulation first. It is advisable to use a 500V megger. Make sure the insulation resistance                                                                                                 |
|                | should not be less than 5 M $\Omega$ .                                                                                                                                                          |
|                | 2. If you need to operate the frequency inverter at frequencies beyond 50Hz, please consider the                                                                                                |
|                | support capability of the mechanical devices.                                                                                                                                                   |
|                | 3. The output at certain frequencies might encounter the resonance points of load devices. This                                                                                                 |
|                | can be avoided by resetting the jump frequency parameter of the frequency inverter.                                                                                                             |
|                | 4. Do not use three-phase frequency inverters as two-phase ones. Otherwise, fault or damage                                                                                                     |
|                | might occur.                                                                                                                                                                                    |
| <u> </u>       | 5. In regions at an altitude of more than 1000 meters, the heat dissipation capability of the                                                                                                   |
| Attention      | frequency inverter might be compromised because of the thin air. Therefore, de-rated operation                                                                                                  |
|                | <ul><li>will be necessary. In such cases, please contact us for technical advice.</li><li>6. The standard matched motor is a four-pole squirrel-cage asynchronous machine. In case of</li></ul> |
|                | discrepancy, please choose appropriate frequency inverters in accordance with the rated current of                                                                                              |
|                | the motor.                                                                                                                                                                                      |
|                | 7. Do not start or stop the frequency inverter with contactors. Otherwise, damage might occur to                                                                                                |
|                |                                                                                                                                                                                                 |
|                | <ul><li>the equipment.</li><li>8. Do not modify factory parameter of frequency inverter without authorization, or damage might</li></ul>                                                        |
|                |                                                                                                                                                                                                 |
|                | be caused.                                                                                                                                                                                      |

#### 1.3 Safety mark of frequency converter:

To ensure the operation and maintenance safety of equipment, please do abide by the safety mark on equipment and do not damage or destroy such mark. Descriptions of safety mark:




- •Make sure to read the Manual prior to installation and running to avoid an electric shock!
- •Do NOT dismantle the cover plate when power is on or within 15min when power is cut off!
- Do NOT perform maintenance, inspection and wiring until the power supply at input/output side is cut off for over 15min and power indicator becomes off completely!

# **Chapter II Product Information**

### 2.1 Nameplate data and naming rule

Nameplate data: take Model CDI-D200G1R5T4B for instance:



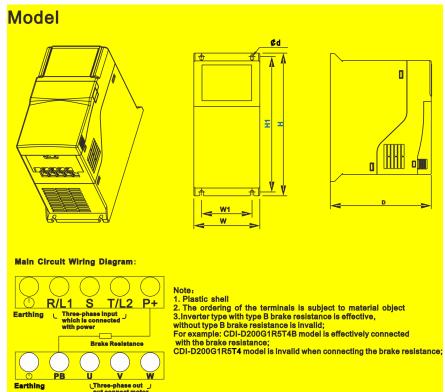
# 2.2 Technical specification

|               | Item                         | Specification                                                                                                                         |  |  |
|---------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|
|               | Control mode                 | V/F control                                                                                                                           |  |  |
|               |                              | Flux vector control                                                                                                                   |  |  |
|               | Frequency Resolution         | Digital: 0.02%                                                                                                                        |  |  |
|               | Frequency Resolution         | Analog: 0.1%                                                                                                                          |  |  |
| Control       | V/F curve                    | Linear, square root, random V/F                                                                                                       |  |  |
|               | Overload capability          | 150% rated current 60s; 180% rated current 3s                                                                                         |  |  |
|               | Start torque                 | G type: 3Hz/150% (VF); 1Hz/150% (Flux vector)                                                                                         |  |  |
|               | Targue compensation          | Manual torque compensation (0.1%-30.0%), automatic torque                                                                             |  |  |
|               | Torque compensation          | compensation                                                                                                                          |  |  |
|               | Control power supply<br>+24V | Max. output current 300mA                                                                                                             |  |  |
|               |                              | 4 channels digital input terminals (DI1 ~ DI4),                                                                                       |  |  |
| Configuration | Input terminal               | Two analog input terminals, AVI is used for voltage $(0V \sim 10V)$ input,                                                            |  |  |
| Configuration |                              | ACI is used for current $(0/4mA \sim 20mA)$ input.                                                                                    |  |  |
|               |                              | 1 channel analog output terminal FM1, can output both voltage (0V $\sim$                                                              |  |  |
|               | Output terminal              | 10V) and current ( $0mA \sim 20mA$ ).                                                                                                 |  |  |
|               |                              | 1-way relay output T1, DC 30V/1A below AC 250V/3A below.                                                                              |  |  |
|               | Mode of operation            | Keyboard, terminal, RS485 communication                                                                                               |  |  |
|               |                              | 14 main frequency sources, 14 auxiliary frequency sources. They can be                                                                |  |  |
|               | L.                           | combined and switched via multiple modes. The input mode of each                                                                      |  |  |
|               | Frequency source             | frequency source can adopt multiple ways: keyboard potentiometer,<br>external analog, digital reference, impulse reference, Multiplex |  |  |
|               |                              | Directive, simple PLC, communication, arithmetic results, etc.                                                                        |  |  |
|               | Acceleration and             | 4-group straight line (terminal switch can be selected via acceleration                                                               |  |  |
|               | Deceleration Time            | and deceleration time), S curve 1 and S curve 2.                                                                                      |  |  |
|               | Emergency stop               | Interrupt frequency inverter output instantly                                                                                         |  |  |
| Operation     | Energency stop               | 16-phase speed is allowable to set at most and use various combination                                                                |  |  |
| Operation     | Multiplex Speed              | of multiplex directive terminal to switch                                                                                             |  |  |
|               |                              | Continuously run 16-phase speed and independently set acceleration                                                                    |  |  |
|               | Simple PLC function          | and deceleration time and running time                                                                                                |  |  |
|               |                              | Independently set Jogging frequency and jogging acceleration and                                                                      |  |  |
|               | Jogging Control              | deceleration time, additionally, set the unit under running state and                                                                 |  |  |
|               | Jogging Control              | confirm whether the jogging is preferential                                                                                           |  |  |
|               | Rotating Speed Tracking      | Frequency inverter starts operation by tracking the load speed                                                                        |  |  |
|               | Fixed-length and             | Realize fixed-length and fixed-distance control function through                                                                      |  |  |
|               | fixed-distance control       | Impulse Input                                                                                                                         |  |  |
|               |                              | impuise input                                                                                                                         |  |  |

|               | Item                          | Specification                                                                                                                                                                                                                                                         |  |  |  |
|---------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|               | Counting control              | The counting function is realized via pulse input.                                                                                                                                                                                                                    |  |  |  |
|               | Swing frequency control       | Applied to the weaving and winding equipment.                                                                                                                                                                                                                         |  |  |  |
|               | Built-in PID                  | The process control closed loop system can be realized.                                                                                                                                                                                                               |  |  |  |
|               | AVR function                  | In case of voltage surge of power grid, ensure stable output                                                                                                                                                                                                          |  |  |  |
|               | CD braking                    | Realize fast and stable shut-down                                                                                                                                                                                                                                     |  |  |  |
|               | Slip compensation             | Compensate the rotation speed deviation due to load increasing                                                                                                                                                                                                        |  |  |  |
|               | Hopping Frequency             | Prevent resonance with load                                                                                                                                                                                                                                           |  |  |  |
|               | Sagged Function               | Balance the load of multiple motors with the same load.                                                                                                                                                                                                               |  |  |  |
| Operation     | Timing control                | Be able to realize automatic shutdown of the frequency inverter when<br>reaching given time                                                                                                                                                                           |  |  |  |
|               | Built-in Virtual Delay Relay  | Realize simple logic Programming to multi-functional output terminal<br>function and digital input terminal signal, the logic results can not<br>only be equivalent to digital input terminal function, but can be output<br>through multi-functional terminal output |  |  |  |
|               | Built-in timer                | 2 built-in timers can gather timing input signal and realize timing signal output. The 2 timers can be both used independently and together.                                                                                                                          |  |  |  |
|               | Built-in operation module     | One built-in 4-way operation module can realize simple plus, minus, multiplication, division, size judgment and integral operation.                                                                                                                                   |  |  |  |
| communication |                               | Standard RS485 communication interface                                                                                                                                                                                                                                |  |  |  |
|               | Motor type                    | Equipped with asynchronous motor                                                                                                                                                                                                                                      |  |  |  |
|               | Operation information         | Given frequency, output current, output voltage, bus voltage, input signal, feedback value, module temperature, output frequency, motor synchronous speed, etc. Through >> Key, display 32 loops at most                                                              |  |  |  |
| Display       | Error message                 | Save the historical information of 3 faults under running state of fault<br>protection. Every piece of fault information includes frequency,<br>current, bus voltage and input/output terminal status when fault<br>happens.                                          |  |  |  |
| Protection    | Frequency inverter protection | Overcurrent, overvoltage, module fault protection, undervoltage,<br>overload, external fault protection, EEPROM fault protection, ground<br>protection, default phase,etc.                                                                                            |  |  |  |
|               | Frequency inverter alarm      | Locked rotor protection, overload alarm.                                                                                                                                                                                                                              |  |  |  |
|               | Instant power-down            | Less than 15 milliseconds: continuous operation                                                                                                                                                                                                                       |  |  |  |
|               | Ambient temperature           | More than 15 milliseconds: auto-reset is allowed                                                                                                                                                                                                                      |  |  |  |
|               | Storage temperature           | -10°C-40°C<br>-20°C-65°C                                                                                                                                                                                                                                              |  |  |  |
| Ambient       | Ambient humidity              | Max. 90%RH (no moisture condensation)                                                                                                                                                                                                                                 |  |  |  |
|               | Height/vibration              | Below 1000m, below 5.9m/s <sup>2</sup> (=0.6g)                                                                                                                                                                                                                        |  |  |  |
|               | Application site              | No corrosive gas, inflammable gas, oil mist or dust and others.                                                                                                                                                                                                       |  |  |  |
|               | Type of cooling               | Forced air cooling                                                                                                                                                                                                                                                    |  |  |  |

# 2.3 Product list

| Frequency inverter type         | Rated capacity   | Rated input         | Rated output     | Adaptive motor    |  |
|---------------------------------|------------------|---------------------|------------------|-------------------|--|
| 1 5 51                          | (kVA)            | current (A)         | current (A)      | (kW)              |  |
| S2 (Single-phase 220V, 50/60Hz) |                  |                     |                  |                   |  |
| CDI-D200G0R4S2                  | 0.8              | 5.0                 | 3.0              | 0.4               |  |
| CDI-D200G0R4S2B                 | 0.8              | 5.0                 | 3.0              | 0.4               |  |
| CDI-D200G0R75S2                 | 1.5              | 9                   | 5.0              | 0.75              |  |
| CDI-D200G0R75S2B                | 1.5              | 9                   | 5.0              | 0.75              |  |
| CDI-D200G1R5S2                  | 2.7              | 15.7                | 7.0              | 1.5               |  |
| CDI-D200G1R5S2B                 | 2.7              | 15.7                | 7.0              | 1.5               |  |
| CDI-D200G2R2S2                  | 3.8              | 27                  | 10.0             | 2.2               |  |
| CDI-D200G2R2S2B                 | 3.8              | 27                  | 10.0             | 2.2               |  |
| CDI-D201G0R4S2                  | <mark>0.8</mark> | <u>5.0</u>          | <u>3.0</u>       | <mark>0.4</mark>  |  |
| CDI-D201G0R4S2B                 | 0.8              | <u>5.0</u>          | <mark>3.0</mark> | 0.4               |  |
| CDI-D201G0R75S2                 | <u>1.5</u>       | <mark>9</mark>      | <u>5.0</u>       | <mark>0.75</mark> |  |
| CDI-D201G0R75S2B                | <u>1.5</u>       | <mark>9</mark>      | <u>5.0</u>       | 0.75              |  |
| CDI-D201G1R5S2                  | 2.7              | <u>15.7</u>         | <mark>7.0</mark> | 1.5               |  |
| CDI-D201G1R5S2B                 | 2.7              | <u>15.7</u>         | 7.0              | 1.5               |  |
| CDI-D201G2R2S2                  | 3.8              | <mark>27</mark>     | <b>10.0</b>      | 2.2               |  |
| CDI-D201G2R2S2B                 | 3.8              | 27                  | 10.0             | 2.2               |  |
|                                 | T2 (Three        | -phase 220V, 50/60H | Iz)              |                   |  |
| CDI-D200G0R4T2                  | 5.9              | 10.5                | 10               | 2.2               |  |
| CDI-D200G0R4T2B                 | 5.9              | 10.5                | 10               | 2.2               |  |
| CDI-D200G0R75T2                 | 8.5              | 15.5                | 17               | 3.7               |  |
| CDI-D200G0R75T2B                | 8.5              | 15.5                | 17               | 3.7               |  |
| CDI-D200G1R5T2                  | 17               | 26                  | 25               | 5.5               |  |
| CDI-D200G1R5T2B                 | 17               | 26                  | 25               | 5.5               |  |
| CDI-D200G2R2T2                  | 21               | 35                  | 32               | 7.5               |  |
| CDI-D200G2R2T2B                 | 21               | 35                  | 32               | 7.5               |  |
| CDI-D201G0R4T2                  | 0.8              | 2.6                 | 3.0              | 0.4               |  |
| CDI-D201G0R4T2B                 | 0.8              | 2.6                 | 3.0              | 0.4               |  |
| CDI-D201G0R75T2                 | 1.5              | 6                   | 5.0              | 0.75              |  |
| CDI-D201G0R75T2B                | 1.5              |                     | 5.0              | 0.75              |  |
| CDI-D201G1R5T2                  | 2.7              | 8.8                 | 7.0              | 1.5               |  |
| CDI-D201G1R5T2B                 | 2.7              | 8.8                 | 7.0              | 1.5               |  |
| CDI-D201G2R2T2                  | 3.8              | 12.5                | 10.0             | 2.2               |  |
| CDI-D201G2R2T2B                 | 3.8              | 12.5                | 10.0             | 2.2               |  |
|                                 | T4 (Three        | -phase 380V, 50/60H | Iz)              |                   |  |
| CDI-D200G0R75T4                 | 1.5              | 4.4                 | 3.0              | 0.75              |  |
| CDI-D200G0R75T4B                | 1.5              | 4.4                 | 3.0              | 0.75              |  |
| CDI-D200G1R5T4                  | 3.0              | 6.0                 | 4.5              | 1.5               |  |
| CDI-D200G1R5T4B                 | 3.0              | 6.0                 | 4.5              | 1.5               |  |
| CDI-D200G2R2T4                  | 4.0              | 6.8                 | 6.0              | 2.2               |  |
| CDI-D200G2R2T4B                 | 4.0              | 6.8                 | 6.0              | 2.2               |  |
| CDI-D200G3R7T4                  | 5.9              | 11                  | 9.5              | 3.7               |  |
| CDI-D200G3R7T4B                 | 5.9              | 11                  | 9.5              | 3.7               |  |
| CDI-D201G0R75T4                 | 1.5              | 4.4                 | 3.0              | 0.75              |  |
| CDI-D201G0R75T4B                | 1.5              | 4.4                 | 3.0              | 0.75              |  |
| CDI-D201G1R5T4                  | 3.0              | 6.0                 | 4.5              | 1.5               |  |


Chapter II Product Information

| CDI-D201G1R5T4B | 3.0              | <mark>6.0</mark> | <mark>4.5</mark> | <mark>1.5</mark> |
|-----------------|------------------|------------------|------------------|------------------|
| CDI-D201G2R2T4  | <mark>4.0</mark> | <mark>6.8</mark> | <mark>6.0</mark> | <mark>2.2</mark> |
| CDI-D201G2R2T4B | <mark>4.0</mark> | <mark>6.8</mark> | <mark>6.0</mark> | <mark>2.2</mark> |
| CDI-D201G3R7T4  | <mark>5.9</mark> | <mark>11</mark>  | <mark>9.5</mark> | <mark>3.7</mark> |
| CDI-D201G3R7T4B | <mark>5.9</mark> | <mark>11</mark>  | <mark>9.5</mark> | <mark>3.7</mark> |

**Order description:** 

When the user makes order, please indicate the corresponding model and specification of product. If possible, other related data such as motor parameters and load type shall be provided. In case of special requirement, please contact the Technical Department of our company.





| <b>Dimensior</b> | is are | as f         | follows |   |
|------------------|--------|--------------|---------|---|
| Dimension        | is are | <b>a</b> 5 1 |         | • |

| W               | W1              | H                  | H1               | D                | <mark>Φd</mark>  |
|-----------------|-----------------|--------------------|------------------|------------------|------------------|
| <mark>85</mark> | <mark>65</mark> | <mark>183.5</mark> | <mark>174</mark> | <mark>145</mark> | <mark>4.5</mark> |

#### Chapter II Product Information

#### 2.5 Routine maintenance

(1) Routine maintenance

Under influence of temperature, humidity, dust and vibration, internal elements of frequency inverter should be aged, which should cause potential fault, or decrease service life of frequency inverter. Therefore, it is significant to perform routine maintenance and regular inspection with the frequency inverter.

Routine checking items:

- A Whether the sound becomes abnormal during the operation of motor.
- B Whether vibration occurs during the operation of motor.
- C Whether the installation condition of frequency inverter is changed.
- D Whether the radiator fan of frequency inverter works normally.

Routine cleaning:

- A. Keep cleanness of frequency inverter.
- B. Remove dust from surface of frequency inverter effectively, to prevent frequency inverter from incursion of dust, or metal dust.
- C. Remove oil sludge form radiating fan of frequency inverter effectively.
- (2) Regular check

Please check the hidden place regularly.

Regular checking items:

- A Check air duct and clean it regularly.
- B Check whether screw is loosened.
- C Check whether frequency inverter is corroded.
- D Check whether the connecting terminal has arc trace.
- (3) Replacement of worn parts

The frequency inverter worn parts include cooling fan and electrolytic capacitor used for filtering, the service life is closely related with the operating environment and maintenance status.

The user can confirm the replacement time according the operating time.

A Cooling fan

Potential damage reason: Shaft abrasion and vane aging.

Critical standard: If there is crack on vane of fan, or if abnormal sound occurs during starting.

B Filter ELCC

Potential damage reason: Bad input power, higher ambient temperature, frequent load switch, or aging of electrolyte. Critical standard: If liquid leaks, if safety valve bulged out, measure of static capacitance, and measure of insulated resistance.

(4) Storage of frequency inverter

After purchased the device, the following shall be noted for temporary storage and long-term storage:

- A Please store it in original package as much as possible.
- B Long term storage should cause aging of ELCC, please electrify it for 5 hours above twice a year during storing, in mode of raising voltage to rated voltage slowly via transformer.
- (5) Guarantee of frequency inverter

Maintenance free is limited to the frequency inverter only.

Under normal use condition, the fault or damage occurs, if the inverter is used domestically (based on the company bar code), and if the product is exported overseas (not including domestic sale), the contract maintenance will be provided within 6 months after the product is purchased at local place for products manufactured by the Company, we will provide paid service for life anytime, or anywhere applied it.

The dealer, manufacturer and agent all over the country can provide after-sale service, and the condition of service is as follow:

- A Perform "Class III" checking service at local place (including troubleshooting).
- B Based on the after-sale service responsibility standard related with the contract contents signed by our company and the agent dealer.
- C The compensated after-sale service can be required from agent dealer of our company (whether warranty is available or not).

If the product has quality problem or product accident, our company will only undertake the responsibility of repair, replacement and return free of charge, if the user requires more responsibility compensation assurance, please handle property insurance with the insurance company in advance.

#### Guarantee term of the product should be effective in 18 months after Bar code date.

For fault caused in following reason, user could obtain compensated maintenance only even guarantee term is effective:

- A. Problem caused in incorrect operation (based on user's manual) or repair, modification without authorization.
- B. Problem caused in violation of critical requirement.
- C. Damage caused in undeserved transportation after purchased.
- D. Aging or fault caused in bad environment.
- E. Damage caused in earthquake, fire, disaster, lightning strike, abnormal voltage or other natural disaster and incidental disaster.
- F. Damage occurs in transportation. (Note: transportation mode should be appointed by user of themselves, the Company should assist agent to conduct transfer of goods).
- G. Brand, trade mark, SN, nameplate marked by manufacturer is damaged or unjustifiable.
- H. Failure to pay off fund according to purchase contract.
- I. Failure to describe actual conditions relating to installation, distribution, operation, maintenance, or other condition to the Company.

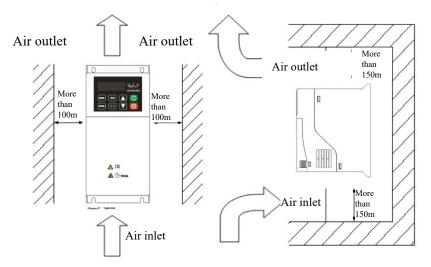
The Company should carry out responsibility of "Three guarantee" above mentioned only after received the returned goods, and confirmed responsibility attribution.

Should it involve an unpaid or untimely settlement due to the buyer, the ownership hereof still belongs to the supplier. In addition, the latter will assume no liability hereinabove, and the buyer shall have no disagreement.

All relevant service fees shall be calculated in accordance with the identical standards of the factory. In the event that an agreement or a contract exists, its priority shall be performed

# **Chapter III Installation and Connection of Frequency Inverter**

### 3.1 Option of the Site and Space for Installation

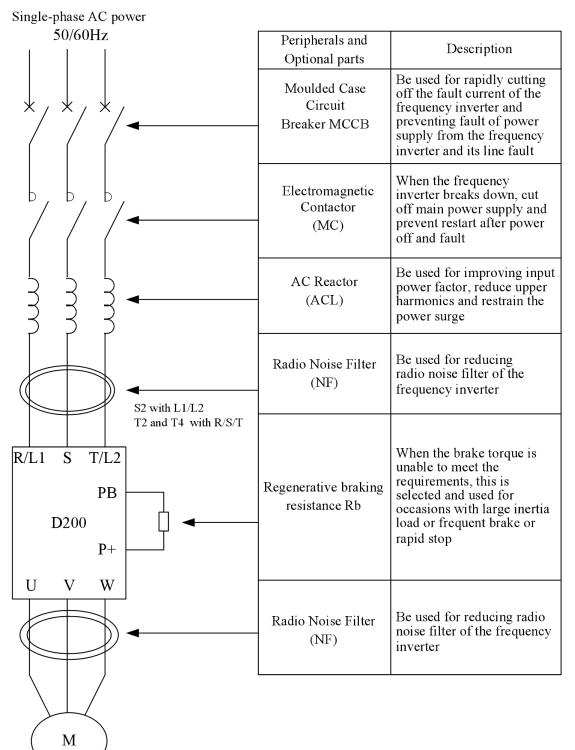

Option of installing position:

|          | 1  | Prevent from sunniness; Don't use in the open air directly.                                                                                                   |
|----------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | 2  | Don't use in the environment containing corrosive gas and liquid.                                                                                             |
| ۵        | 3  | Don't use in the environment containing oil mist and splashing water.                                                                                         |
| $\Delta$ | 4  | Don't use in the environment containing salt mist.                                                                                                            |
| Warning  | 5  | Don't use in the rainy and moisture environment.                                                                                                              |
|          | 6  | If the air contains metal powder or silk fiber, the filter shall be installed.                                                                                |
|          | 7  | Don't use under mechanical shock and vibration condition.                                                                                                     |
|          | 8  | When the ambient temperature exceeds 40°C, it can be only used by taking temperature drop measures.                                                           |
|          | 9  | Overcooling and over-temperature will cause equipment fault. Use under -10°C~+40°C.                                                                           |
|          | 10 | Keep away from power supply noise, for instance, the welding<br>machine and utilization equipment with large power will influence<br>the equipment operation. |
|          | 11 | The active material will influence the operation of this device.                                                                                              |
|          | 12 | The inflammable material, thinner and solvent shall be kept away from this device.                                                                            |

In order to ensure fine performance and long-term working service life, when the D200 Series Frequency inverter is installed, the above proposal shall be abided by, to prevent the inverter being damaged.

Option of the installation space:

When the D200 Series Frequency Inverter is installed vertically, sufficient heat elimination space shall be provided to ensure effective cooling.




Installation space of D200 Series Frequency Inverter

|           | 1. The spaces to be left above/below and on the two sides of the frequency inverter are required both for the model with open bracket (IP00) and that with closed bracket (IP20) |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | 2. Permissible temperature at the air inlet: $-10^{\circ}C \sim +40^{\circ}C$                                                                                                    |
| $\wedge$  | 3. Adequate cooling spaces should be reserved both above and below the frequency inverter, so as to facilitate gas admission and emission.                                       |
| Attention | 4. Do not drop anything into the air passage during installation.<br>Otherwise the fan might be damaged.                                                                         |
|           | 5. Mount filtering devices at the air inlet in cases of floating fiber or cotton or heavy dust.                                                                                  |

#### 3.2 Wiring of the Peripherals and Optional parts

The standard connection method for peripheral equipment and option of the D200 Series Frequency inverter is as follows:

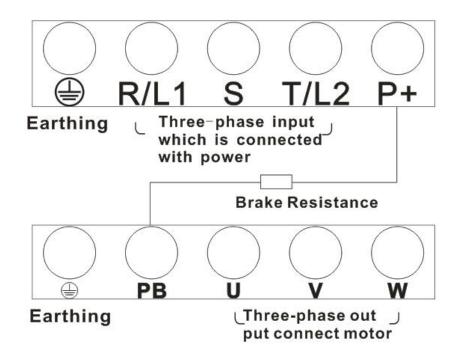


#### **3.3 Wiring of the main circuit**

#### 3.3.1 Wiring diagram for the main circuit and precautions

This section describes connection of main circuit of D200 frequency inverters.

|                      | 1 The AC main circuit power can't be connected with the output terminal U, V and W.  |
|----------------------|--------------------------------------------------------------------------------------|
| ^                    | 2 Connection can be only started after the power is switched off.                    |
| 14                   | 3 Check whether the rated voltage of frequency inverter conforms to the input supply |
| $\overline{\Lambda}$ | voltage.                                                                             |
| Danger               | 4 The frequency inverter can't perform withstand voltage test.                       |
|                      | 5 Tighten the terminal screw according to the specified tightening torque.           |
|                      |                                                                                      |


|               | 1 Ensure the grounding terminal has been grounded before the main circuit is connected. |  |  |  |  |
|---------------|-----------------------------------------------------------------------------------------|--|--|--|--|
|               | (Refer to 3.5)                                                                          |  |  |  |  |
| ^             | 2 The terminal arrangement sequence is based on actual condition.                       |  |  |  |  |
|               | 3 Rated input voltage: AC single-phase 220V Frequency: 50/60Hz                          |  |  |  |  |
| $\overline{}$ | AC Three-phase 220V Frequency: 50/60Hz                                                  |  |  |  |  |
| Attention     | AC Three-phase 380V Frequency: 50/60Hz                                                  |  |  |  |  |
|               | 4 Permissible fluctuation voltage: $\pm 10\%$ (temporary fluctuation $\pm 15\%$ )       |  |  |  |  |
|               | Permissible fluctuation frequency: ±2%                                                  |  |  |  |  |

The main circuit connection diagram of D200 :

Inverter type with type B brake resistance is effective, without type B brake resistance is invalid;

For example: CDI-D200G1R5T4B model is effectively connected with the brake resistance;

CDI-D200G1R5T4 model is invalid when connecting the brake resistance;



#### 3.3.2 Precautions for wiring the input side of the main circuit

#### 1 Installation of Circuit Breaker (MCCB)

In order to protect line, the MCCB or fuse must be connected between the AC main circuit and inverter input terminal R, S, T or L1,L2.

#### 2 Installation of electric leakage circuit breaker

When one electric leakage circuit breaker is connected to the input terminal R, S, T, or L1, L2 in order to prevent incorrect operation, the one without being affected by high frequency shall be selected.

For instance: NV series of Mitsubishi Electric Co., Ltd (manufactured in 1988 or later).

EG and SG series of Fuji Electric Co., Ltd (manufactured in 1984 or later).

CDM1 series circuit breaker manufactured by Delixi Group Co., Ltd.

#### 3 Installation of the electromagnetic contactor (MC)

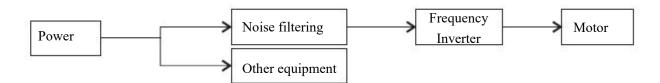
The frequency inverter may be used even if no electromagnetic contactor is installed on the power supply side. Electromagnetic contactor can take the place of MCCB for the sequence break of the main circuit. However, when the primary side is switched off, the regeneration brake will not function and the motor will stop running. When the primary side is closed/open, the electromagnetic contactor can cause loads to start/stop, but frequent close/open will lead to frequency inverter fault. Therefore, while using the brake resistor unit, you can always realize sequential control through the trip contact of the overload relay when the electromagnetic contactor is switched off.

#### 4 Phase sequence connection of terminal

The phase wire of input power can be connected with any one terminal of R, S and T on the terminal board despite of the phase sequence.

#### **5** AC reactor

When an frequency inverter is connected to a large-capacity power transformer (600KVA or beyond), or when a phase lead capacitor (power factor compensator) is connected or disconnected, the peak current through the input power circuit will be so strong that it will damage the rectifier-frequency inverter. Installing a DC reactor (optional) in the frequency inverter or adding an AC reactor (optional) at the input end can effectively improve the power factors at the power supply side.


#### 6 Surge absorber

If a perceptual load (such as electromagnetic contactor, relay, solenoid valve, electromagnetic coil, electromagnetic brake and so on) is connected in the adjacent area, a surge suppressor should also be used while operating the frequency inverter.

#### 7 Setting of noise filter at supply side

The high frequency sound wave from the frequency inverter to supply can be reduced by installing a noise filter. Distribution instance 1: please use the noise filter special for frequency inverter.

The setting of noise filter at supply side is as follows:



#### 3.3.3 Precautions for wiring the output side of the main circuit

1 Connection of output terminal and load

Connect the output terminal U, V and W with the motor lead-out wire U, V and W, verify the forward rotation of motor with the forward operation command (CCW: counter-clockwise rotation observed from motor load side). If the motor rotation is incorrect, interchange any two-phase of output terminal U, V and W.

2 The input power can't be connected with the output terminal U, V and W!!!

3 The output circuit can't be short circuit or grounded

Don't touch the output circuit directly or make output wire touch the inverter case, else the electric shock or ground fault will be caused, it'll be very dangerous. Furthermore, don't make output line be short-circuited.

4 The phase leading capacitor or LC/RC noise filter can't be connected

The phase leading capacitor or LC/RC noise filter can't be connected to output circuit.

5 Avoid installing magnetic starter

If a magnetic starter or a magnetic contactor is connected to the output circuit and if the frequency inverter is connected with load during operation period, the frequency inverter will actuate the over-current protection circuit due to the surged current. The magnetic contactor can only operate when the frequency inverter stops output. 6 Installation of thermal overload relay

The frequency inverter consists of an electronic overl

The frequency inverter consists of an electronic overload protection mechanism. Admittedly, a thermal over-load relay should be installed when a frequency inverter is used in driving several motors or when a multi-pole motor is used. In addition, the rated current of the thermal over-load relay should be the same as the current indicated on the nameplate of the motor.

7 Setting of noise filter at output side

The radio noise and interfering noise can be reduced by installing a special noise filter at the output side of frequency inverter.

Interfering noise: because of electromagnetic interference, the noise might affect the signal line and result in the misoperation of the controller.

Radio noise: the noise can be produced from radio transmitters because of high-frequency waves emitted from the frequency inverter or cables.

8 Countermeasure for interfering noise

Aside from using noise filters, threading all the connecting wires into a ground metal pipe can also restrain interfering noise generated at the output terminal. If we put signal lines over 30cm away, the effect of interfering noise will be abated.

9 Countermeasure for radio noise

Aside from input and output wires, the frequency inverter itself also emits noise. It will help to handle the problem if we install noise filters at the input and output sides of the frequency inverter or apply shielded lines to the iron case of the frequency inverter. It is also very important to make sure that the connecting wire between the frequency inverter and the motor should be as short as possible

10 The wire distance between the frequency inverter and the motor

If the total wire length between the frequency inverter and the motor is too long or the carrier frequency of the frequency inverter (primary IGBT switch frequency) is rather high, the harmonic leakage current from the cables will exert negative influence on the frequency inverter and other external devices.

If connection line between the frequency inverter and the motor is too long, carrier frequency of the frequency inverter can be reduced as below. The carrier frequency can be given by Function Code P1.0.22.

#### Chapter III Installation and Connection of Frequency Inverter

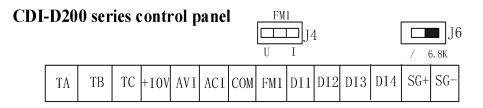
| Table of wire distance between the frequency inverter and the motor              |                |  |  |  |
|----------------------------------------------------------------------------------|----------------|--|--|--|
| Wire distance between the frequency inverter and the motor Carrier frequency (P) |                |  |  |  |
| Max. 50m                                                                         | 10kHz or lower |  |  |  |
| Max. 100m                                                                        | 5kHz or lower  |  |  |  |
| More than 100m                                                                   | 3kHz or lower  |  |  |  |

Output reactors should be installed when the wire distance exceeds 50 meters. Otherwise, the motor may get burnt down.

Due to the high frequency portion of the current flowing from the capacitor distributed between the output wiring of the converter, the external thermal relay may sometimes cause unnecessary operation.

|                            | Main Circuit       | Control Circuit     | Use-free air    | Electromagnetic |
|----------------------------|--------------------|---------------------|-----------------|-----------------|
| Type of Frequency inverter | Wire Gage          | Wire Gage           | breaker         | contactor       |
|                            | (mm <sup>2</sup> ) | (mm <sup>2</sup> )  | MCCB (A)        | MC (A)          |
|                            | S2                 | (Single-phase 220V) |                 |                 |
| CDI-D200G0R4S2             | 2.5                | 1.0                 | 16              | 10              |
| CDI-D200G0R4S2B            | 2.5                | 1.0                 | 16              | 10              |
| CDI-D200G0R75S2            | 2.5                | 1.0                 | 16              | 10              |
| CDI-D200G0R75S2B           | 2.5                | 1.0                 | 16              | 10              |
| CDI-D200G1R5S2             | 2.5                | 1.0                 | 20              | 16              |
| CDI-D200G1R5S2B            | 2.5                | 1.0                 | 20              | 16              |
| CDI-D200G2R2S2             | 4.0                | 1.0                 | 32              | 20              |
| CDI-D200G2R2S2B            | 4.0                | 1.0                 | 32              | 20              |
| CDI-D201G0R4S2             | <mark>2.5</mark>   | <mark>1.0</mark>    | <mark>16</mark> | <mark>10</mark> |
| CDI-D201G0R4S2B            | <mark>2.5</mark>   | <mark>1.0</mark>    | <mark>16</mark> | <mark>10</mark> |
| CDI-D201G0R75S2            | <mark>2.5</mark>   | <mark>1.0</mark>    | <mark>16</mark> | <mark>10</mark> |
| CDI-D201G0R75S2B           | <mark>2.5</mark>   | <mark>1.0</mark>    | <mark>16</mark> | <mark>10</mark> |
| CDI-D201G1R5S2             | <mark>2.5</mark>   | <mark>1.0</mark>    | <mark>20</mark> | <mark>16</mark> |
| CDI-D201G1R5S2B            | <mark>2.5</mark>   | 1.0                 | <mark>20</mark> | <mark>16</mark> |
| CDI-D201G2R2S2             | <mark>4.0</mark>   | 1.0                 | 32              | <mark>20</mark> |
| CDI-D201G2R2S2B            | <mark>4.0</mark>   | 1.0                 | 32              | <mark>20</mark> |
|                            | T2 (               | (Three-phase 220V)  |                 |                 |
| CDI-D200G0R4T2             | 4.0                | 1.0                 | 25              | 16              |
| CDI-D200G0R4T2B            | 4.0                | 1.0                 | 25              | 16              |
| CDI-D200G0R75T2            | 4.0                | 1.0                 | 32              | 25              |
| CDI-D200G0R75T2B           | 4.0                | 1.0                 | 32              | 25              |
| CDI-D200G1R5T2             | 4.0                | 1.0                 | 63              | 40              |
| CDI-D200G1R5T2B            | 4.0                | 1.0                 | 63              | 40              |
| CDI-D200G2R2T2             | 6.0                | 1.0                 | 63              | 40              |
| CDI-D200G2R2T2B            | 6.0                | 1.0                 | 63              | 40              |
| CDI-D201G0R4T2             | <mark>4.0</mark>   | <mark>1.0</mark>    | <mark>25</mark> | <mark>16</mark> |
| CDI-D201G0R4T2B            | <mark>4.0</mark>   | <mark>1.0</mark>    | <mark>25</mark> | <mark>16</mark> |
| CDI-D201G0R75T2            | <mark>4.0</mark>   | <mark>1.0</mark>    | 32              | <mark>25</mark> |
| CDI-D201G0R75T2B           | <mark>4.0</mark>   | <mark>1.0</mark>    | <mark>32</mark> | <mark>25</mark> |

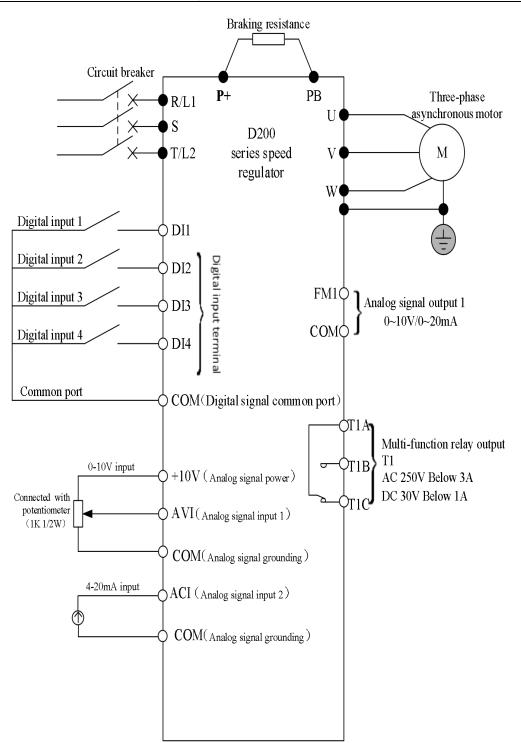
#### 3.3.4 Wiring and Supporting Peripherals for Main Circuits with Reference to the Table below


| Chapter III | Installation | and | Connection | of | Frequency | Inverter |
|-------------|--------------|-----|------------|----|-----------|----------|
|-------------|--------------|-----|------------|----|-----------|----------|

|                  |                  | enapter in instantatio | on and connection of | Trequency miterer |
|------------------|------------------|------------------------|----------------------|-------------------|
| CDI-D201G1R5T2   | <mark>4.0</mark> | <mark>1.0</mark>       | <mark>63</mark>      | <mark>40</mark>   |
| CDI-D201G1R5T2B  | <mark>4.0</mark> | <mark>1.0</mark>       | <mark>63</mark>      | <mark>40</mark>   |
| CDI-D201G2R2T2   | <mark>6.0</mark> | <mark>1.0</mark>       | <mark>63</mark>      | <mark>40</mark>   |
| CDI-D201G2R2T2B  | <mark>6.0</mark> | <mark>1.0</mark>       | <mark>63</mark>      | <mark>40</mark>   |
|                  | T4               | (Three-phase 380V)     |                      |                   |
| CDI-D200G0R75T4  | 2.5              | 1.0                    | 10                   | 10                |
| CDI-D200G0R75T4B | 2.5              | 1.0                    | 10                   | 10                |
| CDI-D200G1R5T4   | 2.5              | 1.0                    | 16                   | 10                |
| CDI-D200G1R5T4B  | 2.5              | 1.0                    | 16                   | 10                |
| CDI-D200G2R2T4   | 2.5              | 1.0                    | 16                   | 10                |
| CDI-D200G2R2T4B  | 2.5              | 1.0                    | 16                   | 10                |
| CDI-D200G3R7T4   | 4.0              | 1.0                    | 25                   | 16                |
| CDI-D200G3R7T4B  | 4.0              | 1.0                    | 25                   | 16                |
| CDI-D201G0R75T4  | <mark>2.5</mark> | <mark>1.0</mark>       | <mark>10</mark>      | <mark>10</mark>   |
| CDI-D201G0R75T4B | <mark>2.5</mark> | <mark>1.0</mark>       | <mark>10</mark>      | <mark>10</mark>   |
| CDI-D201G1R5T4   | <mark>2.5</mark> | <mark>1.0</mark>       | <mark>16</mark>      | <mark>10</mark>   |
| CDI-D201G1R5T4B  | <mark>2.5</mark> | <mark>1.0</mark>       | <mark>16</mark>      | <mark>10</mark>   |
| CDI-D201G2R2T4   | <mark>2.5</mark> | <mark>1.0</mark>       | <mark>16</mark>      | <mark>10</mark>   |
| CDI-D201G2R2T4B  | <mark>2.5</mark> | <mark>1.0</mark>       | <mark>16</mark>      | <mark>10</mark>   |
| CDI-D201G3R7T4   | <mark>4.0</mark> | <mark>1.0</mark>       | <mark>25</mark>      | <mark>16</mark>   |
| CDI-D201G3R7T4B  | <mark>4.0</mark> | <mark>1.0</mark>       | <mark>25</mark>      | <mark>16</mark>   |

#### 3.4 Connection of control circuit

#### 3.4.1 Arrangement and connection of controlling circuit terminals


he wiring diagram of D200 main circuit and control circuit is as follows:



See the wiring diagram of D200 main loop and control loop (S2 connected with L1/L2, T2 and T4 conn ected with R/S/T)

Inverter type with type B brake resistance is effective, without type B brake resistance is invalid; For example: CDI-D200G1R5T4B model is effectively connected with the brake resistance;

CDI-D200G1R5T4 model is invalid when connecting the brake resistance;



#### 3.4.2 Function of control circuit terminal

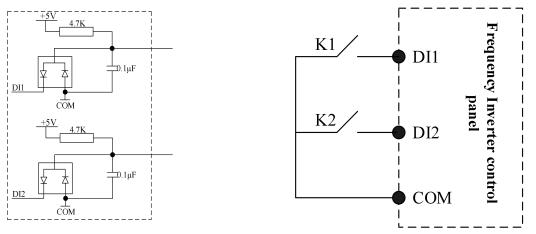
The Table below describes the functions of control circuit terminal, and connection is based on the function of each terminal.

| Туре          | Terminal                 | Terminal name              | Function description                                               |  |  |  |
|---------------|--------------------------|----------------------------|--------------------------------------------------------------------|--|--|--|
|               | DI1                      | Digital input 1            |                                                                    |  |  |  |
| Digital input | DI2                      | Digital input 2            | The control panel is equipped with terminal, refer to the          |  |  |  |
| Digital input | DI3                      | Digital input 3            | function description of P2.0.00~P2.0.03 for use.                   |  |  |  |
|               | DI4                      | Digital input 4            |                                                                    |  |  |  |
|               | T1A                      |                            | TA-TB is normally open                                             |  |  |  |
| T1 relay      | T1B                      | Multi-function             | TA-TC is normally closed                                           |  |  |  |
| TTTClay       | T1C                      | relay output T1            | Driving Capability: AC250V below 3A<br>DC30V below 3A              |  |  |  |
|               | 10V                      | 1017                       | Supply DC10V supply voltage which is used as the working           |  |  |  |
|               | 6014                     | 10V power                  | power of external potentiometer.                                   |  |  |  |
|               | COM                      | output                     | Driving Capability: below 50mA                                     |  |  |  |
|               | AVI-COM                  | Analoginnut                | The terminal is standard on the control board. Used to receive     |  |  |  |
| Analog input  |                          | Analog input<br>terminal 1 | external analog signal input, only used for $0V \sim 10V$ voltage  |  |  |  |
|               |                          |                            | signal                                                             |  |  |  |
|               | ACI-COM                  | Analog input               | The terminal is standard on the control board. For receiving       |  |  |  |
|               |                          | terminal 2                 | external analog signal input, only used for $0/4mA \sim 20mA$      |  |  |  |
|               |                          |                            | current signal                                                     |  |  |  |
| Analog        | og FM1-COM Analog output |                            | Control panel with standard terminals. Output $0 \sim 10V$ voltage |  |  |  |
| output        |                          | terminal 1                 | or $0 \sim 20$ mA current                                          |  |  |  |
|               |                          | RS485                      |                                                                    |  |  |  |
|               | SG+                      | communication              |                                                                    |  |  |  |
|               | 501                      | positive signal            |                                                                    |  |  |  |
| Communicati   |                          | terminal                   | Control panel with standard terminals. Is the RS485                |  |  |  |
| on terminal   |                          | RS485                      | communication terminal                                             |  |  |  |
|               | SG-                      | communication              |                                                                    |  |  |  |
|               | 20                       | negative signal            |                                                                    |  |  |  |
|               |                          | terminal                   |                                                                    |  |  |  |

#### 3.4.3 Wiring Instruction for Control Circuit

To avoid interfere, please distribute control loop apart from main loop and heavy current loop (relay contact, 220V program loop), the Shielded Twisted Cable or Shielded Twisted Pair should be used in wiring the control circuit; the shielding sheath should be connected to terminal PE of the frequency inverter and the wire distance should be less than 50 meters to prevent misoperation from interference.

1. Description for Circuit Wiring of Analog Input Terminal

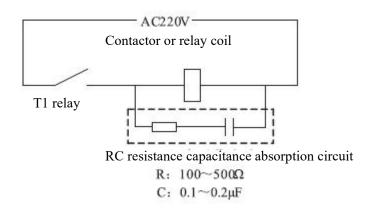

Control AVI channel, voltage signal input; Control ACI channel, current signal input.

2. Description for Circuit Wiring of Analog Output Terminal

J4 is to control the FM1 channel and select the voltage/current signal output. When the current signal output is selected, the switching position of J4 should be located on the I side, and the voltage signal output should be located on the U side.

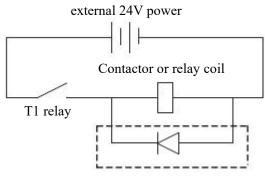
3. Description for Circuit Wiring of Digital Input Terminal

Digital input requires using shielding wire or twisted-pair shielding wire to prevent interference from external model, and the connection distance shall be less than 50m.




Wiring diagram on the control panel of digital input loop

- 4 Connection description of T1 output terminal loop
- AC loop


If the inductive load (for instance: electromagnetic relay and contactor) is driving, the surge voltage absorption circuit shall be equipped such as RC absorption circuit (the leakage current shall be less than the holding current of the controlled contactor or relay) as the Figure below:

Mode of connection



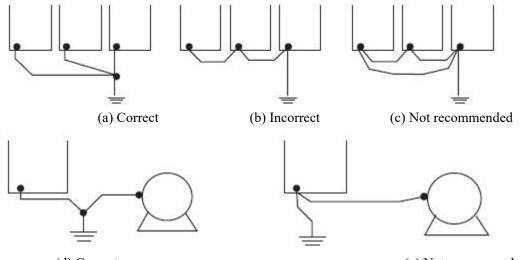
#### • DC loop

If the DC electromagnetic loop is driven, the freewheeling diode (note polarity) shall be equipped as the Figure below:



#### DC absorption circuit

#### 3.5 Grounding


1 Grounding resistance value:

200V grade:  $100\Omega$  or lower

400V grade:  $10\Omega$  or lower

660V grade:  $5\Omega$  or lower

- 2 The D200 Series Frequency inverter can't be grounded with welding machine, motor and other strong current electric equipment commonly. The grounding wires in the tube and wire of strong current electric equipment shall be laid respectively.
- 3 Use the standard grounding wire and the length shall be short as possible.
- 4 When multiple D200 Series Frequency inverters are used side by side, ground this device as the Figure (a), and the grounding wire can't form loop as Figure (c).
- 5 The grounding wire of D200 Series Frequency inverter and motor shall be connected as Figure (d).



### (d) Correct

(e) Not recommended

6 Connection check:

Check the following items after installation and connection are completed.

- A Whether connection is correct.
- B Whether broken line or screw is left in the device.
- C Whether screw is tightened.
- D Whether the un-insulated conductor on the terminal contacts other terminals.

# **Chapter IV Keyboard Operation and Running**

#### 4.1 Option of operating mode

The D200 Series Frequency inverter provides three control modes, including keyboard operation, terminal operation and communication operation, and the user can select corresponding control mode according to the site environment and working demand. Refer to the 7.1 description for details.

#### 4.2 Test run and inspection

#### 4.2.1 Precautions and inspection before test run

|          | 1 The input power can be only switched on after the front cover is in position, don't        |
|----------|----------------------------------------------------------------------------------------------|
|          | remove the outer cover when power is on, else electric shock will be caused.                 |
| ^        | 2 Do not get close to the frequency inverter or the load when selecting re-start because it  |
| 14       | may suddenly restart after being stopped just a moment ago. (Even though the frequency       |
|          | inverter can restart, its mechanical system can safeguard individual safety) otherwise it    |
| Danger   | may cause hurt to human body.                                                                |
|          | 3 Because the function setting can make stop button out-of-work, an independent              |
|          | emergency stop button shall be installed, else personal injury will be caused.               |
|          | 1 Don't touch the radiator or resistor because the temperature is very high which will cause |
|          | burnt.                                                                                       |
|          | 2 Because the low speed operation will be turned into high speed operation, confirm the      |
| A        | safe working range of motor and mechanical equipment, else personal injury and               |
|          | equipment damage will be caused.                                                             |
| <u> </u> | 3 An independent internal contracting brake can be installed when necessary, else personal   |
|          | injury will be caused.                                                                       |
|          | 4 During the operation process, don't change the wire, else equipment or frequency           |
|          | inverter will be damaged.                                                                    |

In order to ensure safety, before initial operation, the mechanical coupler shall be released, so that the motor can be separated from the mechanical equipment, if the motor is connected with the mechanical equipment before initial operation, handle it with care to prevent possible hazardous condition. The following items shall be checked before test run:

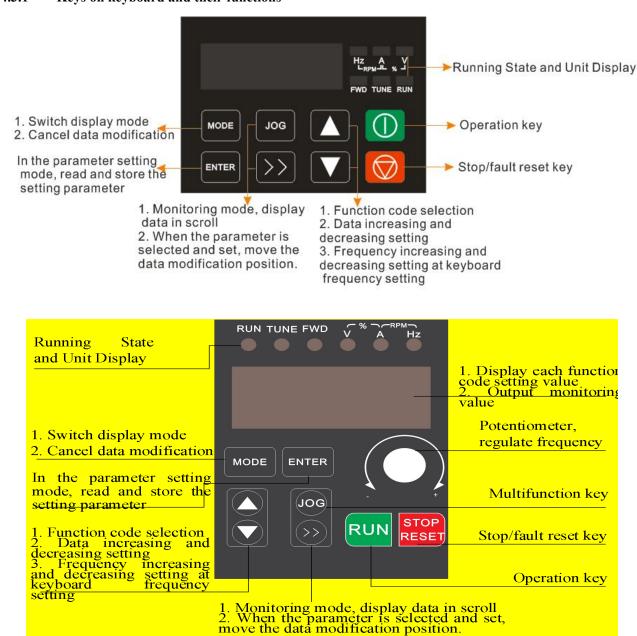
- A Whether the wire is connected with terminal correctly.
- B Whether the wire head causes short circuit.
- C Whether the screw terminal is tightened.
- D Whether the motor is installed reliably.

#### 4.2.2 Test run

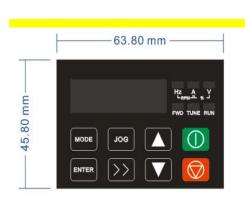
When the system gets ready, switch the power on and check whether the inverter works normally.

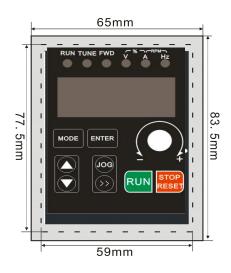
The numeric keyboard indicator lamp shall be on when power is on.

If any one problem is found, switch the power off immediately.


#### 4.2.3 **Operating inspection**

Confirm the following items during the operation period:


- A Whether the motor works normally.
- B Whether the rotation direction of motor is correct.
- C Whether the motor has abnormal vibration or noise.
- D Whether acceleration and deceleration are stable.
- E Whether current matches the load.
- F Whether the display of LED indicator lamp and numeric keyboard is correct.


#### 4.3 Operating method of keyboard

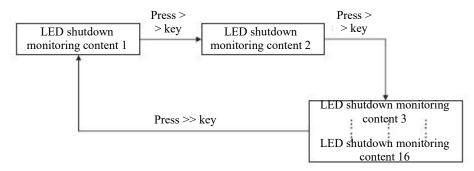
#### 4.3.1 Keys on keyboard and their functions



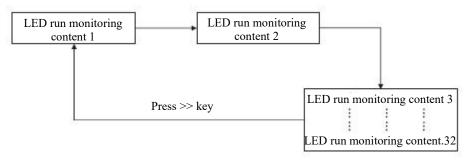
#### Operation keyboard size






# Indicator lamp function

| NO NO          | Наименование | Описание функций                                               |  |  |  |  |  |
|----------------|--------------|----------------------------------------------------------------|--|--|--|--|--|
| 1              | FWD          | Индикаторная лампочка горит при вращении в прямом              |  |  |  |  |  |
|                |              | направлении, при обратном – не горит                           |  |  |  |  |  |
| 2              | RUN          | Когда частотный преобразователь находится в рабочем состоянии, |  |  |  |  |  |
| <u> </u>       | Ron          | горит данная индикаторная лампочка                             |  |  |  |  |  |
| <mark>3</mark> | V            | Выражает значение напряжения                                   |  |  |  |  |  |
| <mark>4</mark> | A            | Выражает значение тока                                         |  |  |  |  |  |
| <mark>5</mark> | Hz           | Выражает частоту                                               |  |  |  |  |  |
| <mark>6</mark> | V-%-A        | Процентное выражение                                           |  |  |  |  |  |
| <mark>7</mark> | A-RPM-Hz     | Выражает скорость вращения                                     |  |  |  |  |  |


### 4.3.2 Data Monitoring Mode

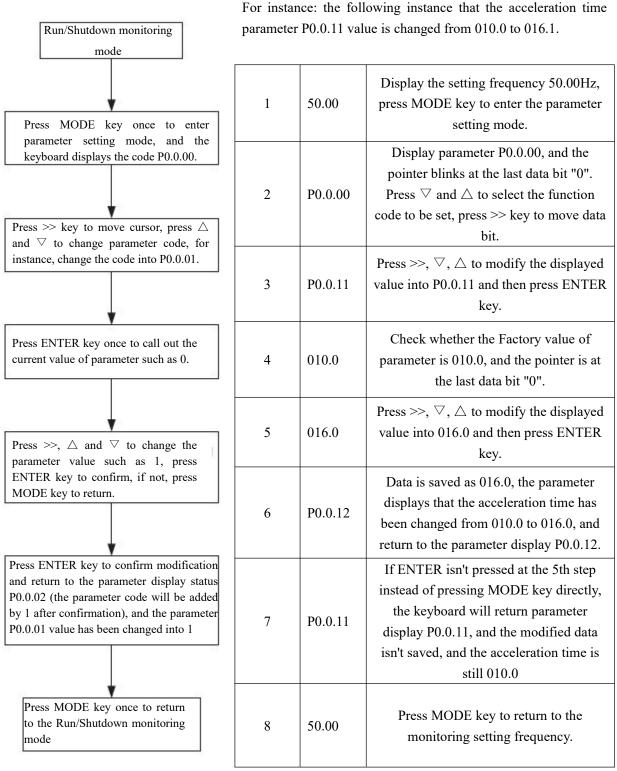
### 1 Cycle monitoring mode

When the monitoring mode is adopted, the display item will be changed by one after >> key is pressed every time, it can be used to browse current status information of frequency inverter.



At most 16 shut-down monitoring contents can be cycled under stop status, and specific displayed content in cycle depends on the function code P5.0.05. (Refer to P5.0.05 description for details)




At most 32 operation monitoring contents can be cycled under run status, and specific displayed content is decided by function codes P5.0.02 and P5.0.03. (Refer to P5.0.02 and P5.0.03 description for details)

- 2 Fault/alarm monitoring mode
- A When the operation monitoring mode is adopted and the fault and alarm occur, the fault and alarm information will be displayed automatically.
- B If the fault disappears, press STOP/RESET.
- C If severe fault occurs, Reset can be only performed at power-off.
- D If the fault isn't reset or the display isn't cleared, the keyboard will display the fault code all the time (refer to Chapter IX).

#### 4.3.3 Use of Multi- Function Key JOG

Upon the demand of the users, set Function Code P5.0.00 and realize the definition of the users to Function Key JOG, and the Key JOG can choose dead and forward rotation jogging running, reverse rotation jogging running and switch between forward rotation and reverse rotation, in which forward rotation jogging running and reverse rotation jogging running are valid under any running control, and the switch between forward rotation and reverse rotation is only valid under keyboard control mode.

#### 4.3.4 Parameter check and set methods (using digital keyboard)



Note: When the following condition occurs, the data can't be changed.

- 1 The parameters which can't be regulated during the frequency inverter operation. (Refer to Function Parameter Table)
- 2 Start the parameter protection function in P5.0.18 (parameter write protection).

#### 4.4 Function Code Display Mode

D200 Series Frequency inverter provides three kinds of Function Code Display Modes: Primary mode, User Mode and Check mode.

• Primary mode (P0.0.01=0)

In primary mode, the function code has the prefix with 'P'. At this time, the Function Code P5.0.17 determines what parameters of the function codes are specifically displayed. Its ones, tens, hundreds and thousands respectively correspond to each function code group. Refer to the following table for explanation of specific meaning:

| Function code                                              | Setting scope |   | Description                              |
|------------------------------------------------------------|---------------|---|------------------------------------------|
|                                                            | Omag          | 0 | Only display fundamental group parameter |
|                                                            | Ones          | 1 | Display menus at all levels              |
| Function code parameter<br>displays P5.0.17 is<br>selected | Tens          | 0 | Not display P7 group                     |
|                                                            |               | 1 | Display P7 group                         |
|                                                            |               | 2 | Reserved                                 |
|                                                            | Hundreds -    | 0 | Not display correction group             |
|                                                            |               | 1 | Display correction group                 |

#### • User mode (P0.0.01=1)

Only the function code parameter of user function customization is displayed, which function code parameter of inverter depends on the 7.0 group function code, and at most 30 can be customized. Under user mode, the prefix of function code is 'U'.

| Function code           |         | Setting scope                   | Description                     |
|-------------------------|---------|---------------------------------|---------------------------------|
|                         | P7.0.00 | U0.0.01                         | When the function code          |
| Function code parameter |         | U0.0.00~UX.X.XX                 | parameter is set, it'll be      |
| displays P7.0 group is  | •••••   | (Not including P7 and P8 group) | regarded as the user            |
| selected                | P7.0.29 | U0.0.00~UX.X.XX                 | customization function code. At |
|                         | r7.0.29 | (Not including P7 and P8 group) | most 30 codes can be selected.  |

• Check mode (P0.0.01=2)

Only the modified parameter is displayed (when the parameter value of function mode is different from the Factory value, it'll be regarded as the modified one), under check mode, the prefix of function code is 'C'.

# **Chapter 5 Tables of Function Parameters**

#### **Description for Tables of Function Parameters:**

- 1. The function parameters of D200 Series Frequency inverter can be divided into 9 groups according to the function code parameter, each group includes several sub-groups, and each group includes several function codes, and the function codes can be set for different values.
- 2. The content such as PX.X.XX in the Function Table and other content of this Manual indicate the No. "XX" function code of Group "X.X"; for instance, "P0.0.01" indicates No. 01 function code of Group P0.0.
- 3. The column content of Function Table is described as follows:

The "Function code" of the 1st column: indicating the number of function code parameter; the "Function name" of the 2nd column: indicating the complete name of function code parameter; the "Setting scope" of the 3rd column: indicating the valid range of reference value of function code parameter; the "Factory value" of the 4th column: indicating the factory reference value of function code parameter; the "Modification limit" of the 5th column: indicating the modification attribute of function code parameter (namely whether modification is permitted or condition can be modified).

The description of function code parameter modification limit is as follows:

" $\downarrow$ ": Indicating the reference value of this parameter can be modified when the frequency inverter is under stop and running state.

"★": Indicating the reference value of this parameter can't be modified when the frequency inverter is operated.

"•": Indicating the parameter value is the actual test value which can't be modified.

"O": Indicating this parameter can be only modified at P5.0.18=2.

#### **Explanation:**

The user shall read this Manual thoroughly when the frequency inverter parameter is modified. If the user doesn't know how to use special function, contact the Technical Department of our company, and we'll provide safe and reliable technical support service. The user can't modify the data randomly; else severe fault will occur to cause severe property loss. The user will undertake the consequence without abiding by this warning!

#### Function Factory Modificatio Function name Setting scope code value n limit Group P0.0: Basic Group Type of Frequency 1: G type (constant torque load type) Machine 0 P0.0.00 inverter 2: Reserved type 0: Primary mode (prefix is "P") P0.0.01 1: User mode (prefix is "U") 0 Ο Display mode 2: Check mode (prefix is "Ć") P0.0.02 Control mode 0: V/F control 0 ★ 0: Keyboard control Option of operation P0.0.03 1: Terminal control 0 $\overset{\frown}{\nabla}$ control mode 2: Communication control 0: Keyboard Reference (No Power-off Memory) 1: Keyboard Reference (Power-off Memory) 2: Keyboard Potentiometer Reference 3: External Terminal AVI Reference 4: External Terminal ACI Reference Option of A P0.0.04 5: PULS Impulse Reference (DI4) 0 ★ Frequency Source 6: Multiplex Directive Reference 7: Simple PLC Reference 8: PID Control Reference 9: Communication Reference 10: Operation Result 1 11: Operation Result 2 12: Operation Result 3 13: Operation Result 4 Keyboard P0.0.05 Frequency 000.00~Highest Frequency 050.00 $\overset{\frown}{\nabla}$ Reference 0: Default Direction 1: Negation of Direction P0.0.06 **Running Direction** 0 ☆ 2: Determined by multi-functional input terminal P0.0.07 050.00Hz~320.0Hz Max. frequency 050.00 ★ Upper limit Lower limit frequency ~ Max. P0.0.08 050.00 ★ frequency frequency Lower limit P0.0.09 000.00~Upper limit frequency 000.00 $\overset{\frown}{\nabla}$ frequency 0: Running at lower limit frequency Lower frequency 1: Stop P0.0.10 0 $\overset{\frown}{\nabla}$ 2: Zero-speed Running operation mode 3: Standby Machine P0.0.11 0000.0~6500.0s $\overset{\frown}{\nabla}$ Acceleration time type Machine P0.0.12 0000.0~6500.0s $\overset{\frown}{\nabla}$ Deceleration time type 0: Common motor P0.0.13 1: Variable-frequency motor 0 ★ Type of Motor 2: Reserved Machine P0.0.14 Motor rated power 0000.1kw~1000.0kw ★ type Motor rated P0.0.15 050.00 ★ 000.01Hz~Highest Frequency frequency Machine ★ P0.0.16 Motor rated voltage 0001V~2000V type Machine P0.0.17 Motor rated current 000.01A~655.35A ★ type

#### 5.1 Group P0 - Basic Function

Chapter 5 Tables of Function Parameters

|                  | s of Function Parameters                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                        |
|------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------|
| Function<br>code | Function name                                                   | Setting scope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Factory<br>value | Modificatio<br>n limit |
| P0.0.18          | Motor Rated Rotating<br>Speed                                   | 00001rpm~65535 rpm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Machine<br>type  | *                      |
| P0.0.19          | Stator resistance of asynchronous motor                         | 00.001~65.535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Machine<br>type  | *                      |
| P0.0.20          | Rotor resistance of asynchronous motor                          | 00.001~65.535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Machine<br>type  | *                      |
| P0.0.21          | Leakage inductance of asynchronous motor                        | 000.01 mH~655.35 mH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Machine<br>type  | *                      |
| P0.0.22          | Mutual inductance of asynchronous motor                         | 0000.1mH~6553.5 mH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Machine<br>type  | *                      |
| P0.0.23          | Non-load current of asynchronous motor                          | 000.01A~Motor rated current                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Machine<br>type  | *                      |
| P0.0.24          | Parameter identification control                                | 0: No action<br>1: Static identification<br>2: Complete identification                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                | *                      |
|                  | Gro                                                             | oup P0.1: Expansion Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                        |
| P0.1.00          | Option of Frequency<br>Source                                   | <ul> <li>0: Frequency Source A</li> <li>1: Frequency Source B</li> <li>2: Frequency Source A+B</li> <li>3: Frequency Source A-B</li> <li>4: Max. Value of A &amp; B</li> <li>5: Min. Value of A &amp; B</li> <li>6: Standby Frequency Source 1</li> <li>7: Standby Frequency Source 2</li> <li>8: Switch of Terminal among the above 8 kinds</li> </ul>                                                                                                                                             | 0                | 47                     |
| P0.1.01          | Option of Frequency<br>Source B                                 | 0: Keyboard Reference (No<br>Power-off Memory)<br>1: Keyboard Reference<br>(Power-off Memory)<br>2: Keyboard Potentiometer<br>Reference<br>3: External Terminal AVI<br>Reference<br>4: External Terminal ACI<br>Reference<br>5: PULS Impulse Reference<br>(DI4)<br>6: Multiplex Directive<br>Reference<br>7: Simple PLC Reference<br>8: PID Control Reference<br>9: Communication Reference<br>10: Operation Result 1<br>11: Operation Result 2<br>12: Operation Result 3<br>13: Operation Result 4 | 0                | *                      |
| P0.1.02          | Adjustment Volume of:<br>Frequency Source B at<br>superposition | 000%~150%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100%             | 귰                      |
| P0.1.03          | Upper Limit Frequency<br>Source                                 | 0: Digital Reference (P0.0.08)<br>1: External Terminal AVI<br>Reference<br>2: External Terminal ACI<br>Reference<br>3: Multiplex Directive<br>Reference<br>4: PULS Impulse Reference (DI4)<br>5: Communication Reference<br>6: Operation Result 1<br>7: Operation Result 2<br>8: Operation Result 3<br>9: Operation Result 4                                                                                                                                                                        | 0                | *                      |

| Function           | Function name                                        | Setting scope                                  | Factory value                | Modification<br>limit                   |
|--------------------|------------------------------------------------------|------------------------------------------------|------------------------------|-----------------------------------------|
| code<br>P0.1.04    | Upper Limit Frequency                                | 000.00~Highest frequency                       | 000.00                       | nimit<br>X                              |
|                    | Offset<br>Keyboard Reference                         |                                                |                              |                                         |
| P0.1.05            | frequency Shut-down                                  | 0: No Memory                                   | 0                            | ${\sim}$                                |
| 10.1.05            | Memory Selection                                     | 1: Memory                                      | Ŭ                            | ~                                       |
|                    | Keyboard Reference                                   | 0. Dunning Frequency                           |                              |                                         |
| P0.1.06            | frequency Action                                     | 0: Running Frequency<br>1: Reference frequency | 0                            | *                                       |
|                    | Benchmark at running                                 | 1 2                                            |                              |                                         |
| D0 1 07            | Benchmark frequency of                               | 0: Highest Frequency                           |                              |                                         |
| P0.1.07            | accelerating and<br>Deceleration time                | 1: Reference frequency                         | 0                            | *                                       |
| <b>D</b> 0 1 00    |                                                      | 2: 100Hz                                       | 000 00                       | ٨                                       |
| P0.1.08<br>P0.1.09 | Jogging running frequency                            | 000.00~Highest Frequency<br>0000.0s~6500.0s    | 002.00 0020.0                | <br>↓                                   |
| P0.1.09<br>P0.1.10 | Jogging acceleration time                            | 0000.0s~6500.0s                                | 0020.0                       | **                                      |
| P0.1.10<br>P0.1.11 | Jogging deceleration timeAcceleration time 2         |                                                |                              | X                                       |
|                    | Deceleration time 2                                  | 0000.0s~6500.0s                                | Machine type                 | ×                                       |
| P0.1.12<br>P0.1.13 | Acceleration time 3                                  | 0000.0s~6500.0s<br>0000.0s~6500.0s             | Machine type<br>Machine type | **                                      |
| P0.1.13<br>P0.1.14 | Deceleration time 3                                  | 0000.0s~6500.0s                                | <b>~1</b>                    | x x                                     |
| P0.1.14<br>P0.1.15 | Acceleration time 4                                  |                                                | Machine type                 | ×                                       |
|                    |                                                      | 0000.0s~6500.0s                                | Machine type                 | な<br>2                                  |
| P0.1.16            | Deceleration time 4<br>Frequency Switch Point        | 0000.0s~6500.0s                                | Machine type                 | X                                       |
| P0.1.17            | between Acceleration time 1                          | 000.00~Highest Frequency                       | 000.00                       | ${\swarrow}$                            |
| 10.1.17            | and Acceleration time 2                              | 000.00 Highest Frequency                       | 000.00                       | ~                                       |
|                    | Frequency Switch Point                               |                                                |                              |                                         |
| P0.1.18            | between Deceleration time                            | 000.00~Highest Frequency                       | 000.00                       | $\stackrel{\sim}{\sim}$                 |
|                    | 1 and Deceleration time 2                            |                                                |                              |                                         |
|                    | Acceleration and                                     | 0: Straight line                               |                              |                                         |
| P0.1.19            | deceleration mode                                    | 1: Curve S                                     | 0                            | *                                       |
|                    |                                                      | 12: Curve S2                                   |                              |                                         |
| P0.1.20            | Percentage of Starting                               | 000.0%~100.0%                                  | 030.0                        | *                                       |
| 101120             | Phase of Curve S                                     |                                                |                              |                                         |
| P0.1.21            | Percentage of Ending Phase<br>of Curve S             | 000.0%~100.0%                                  | 030.0                        | *                                       |
| P0.1.22            | Hopping Frequency 1                                  | 000.00~Highest Frequency                       | 000.00                       | *                                       |
| P0.1.23            | Hopping Frequency 2                                  | 000.00~Highest Frequency                       | 000.00                       | X                                       |
| P0.1.24            | Hopping Frequency scope                              | 000.00~Highest Frequency                       | 000.00                       | X                                       |
| P0.1.24            | Jogging Priority                                     | 0: Valid 1: Valid                              | 000.00                       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  |
| P0.1.25            |                                                      |                                                | 0                            | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| P0.1.34            | Reserved                                             |                                                |                              |                                         |
| 10.1.54            | Switching frequency point                            |                                                |                              |                                         |
| P0.1.35            | of deceleration time 2 and                           | 000.00Hz ~ Highest frequency                   | 000.00                       |                                         |
| 10.1.55            | deceleration time 3                                  | sociolitic ingress ne factory                  | 000.00                       |                                         |
| P0.1.36            | Reserved                                             |                                                |                              |                                         |
| 1 01115 0          |                                                      |                                                |                              |                                         |
|                    | Grot                                                 | p P0.2: Expansion Group                        |                              |                                         |
|                    |                                                      | 0: Relative to the highest                     |                              |                                         |
| P0.2.01            | B Frequency source range                             | frequency                                      | 0                            | $\stackrel{\scriptstyle \wedge}{\sim}$  |
| P0.2.01            | selection                                            | 1: relative to the A frequency                 | 0                            | X                                       |
|                    |                                                      | source                                         |                              |                                         |
| P0.2.02            | B frequency offset at                                | 000.00Hz~Highest Frequency                     | 0                            | X                                       |
| P0.2.02            | stacking                                             | 000.00HZ <sup>,</sup> ~ Highest Flequency      | 0                            | X                                       |
|                    | Unit of acceleration and                             | 0: 1s                                          |                              |                                         |
| P0.2.03            | deceleration time                                    | 1: 0.1s                                        | 1                            | $\star$                                 |
|                    | deceleration time                                    | 2: 0.01s                                       |                              |                                         |
| P0.2.04            | Encourage recolution                                 | 1: 0.1Hz                                       | 2                            | *                                       |
| 10.2.04            | Frequency resolution                                 | 2: 0.01Hz                                      | 2                            | ~                                       |
| P0.2.05            | Undervoltage point setting                           | 60.0%~140.0%                                   | 100.0                        | ${\sim}$                                |
|                    |                                                      | 0: ban                                         |                              |                                         |
| P0.2.06            | Dead zone compensation                               | 1: allow                                       | 1                            | $\overleftrightarrow$                   |
|                    | switch                                               | 2: Reserved                                    |                              |                                         |
|                    | 1                                                    |                                                |                              |                                         |
|                    | Douron on to amount 1 -1                             |                                                |                              |                                         |
| P0.2.08            | Power on to ground short circuit protection function | 0: Not enabled<br>1: can make                  | 1                            | $\overset{\frown}{\simeq}$              |

# 5.2 Group P1 - Motor Control Parameter

| Function<br>code | Function name                        | Setting scope                                                                                                               | Factory<br>value | Modification<br>limit |
|------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|
|                  | -                                    | Group P0.0: Basic group                                                                                                     |                  | -                     |
| P1.0.00          | V/F Curve Mode                       | 0: Straight Line<br>1: Multi-point Broken Line<br>2: Square V/F Curve 1<br>3: Square V/F Curve 2<br>4: Square V/F Curve 3   | 0                | *                     |
| P1.0.01          | Torque Boost                         | 00.0% (Automatic Torque Boost)<br>00.1%~30.0%                                                                               | 04.0             | \$                    |
| P1.0.02          | Cutoff Frequency of<br>Torque Boost  | 000.00~Highest Frequency                                                                                                    | 050.00           |                       |
| P1.0.03          | V/F Slip<br>Compensation Gain        | 000.0%~200.0%                                                                                                               | 000.0            | \$                    |
| P1.0.10          | Start Mode                           | 0: Direct Start<br>1: Speed Tracking Mode<br>2: Brake and Restart                                                           | 0                | \$                    |
| P1.0.11          | Speed Tracking Mode                  | <ul><li>0: Start from Shutdown Frequency</li><li>1: Start from Zero Speed</li><li>2: Start from Highest Frequency</li></ul> | 0                | *                     |
| P1.0.12          | Start Frequency                      | 00.00Hz~10.00Hz                                                                                                             | 00.00            | \$                    |
| P1.0.13          | Hold Time of Start<br>Frequency      | 000.0s~100.0s                                                                                                               | 000.0            | *                     |
| P1.0.14          | Start DC brake voltage               | 000%~100%                                                                                                                   | 000              | *                     |
| P1.0.15          | Start DC brake time                  | 000.0s~100.0s                                                                                                               | 0.000            | *                     |
| P1.0.16          | Stop mode                            | 0: Stop by Deceleration<br>1: Free Stop                                                                                     | 0                | $\overleftrightarrow$ |
| P1.0.17          | Stop DC Braking<br>Initial Frequency | 000.00Hz~Highest Frequency                                                                                                  | 000.00           | *                     |
| P1.0.18          | Stop DC Braking<br>Hold Time         | 000.0s~100.0s                                                                                                               | 000.0            | \$                    |
| P1.0.19          | Stop DC Braking<br>Current           | 000%~100%                                                                                                                   | 000              | \$                    |
| P1.0.20          | Stop DC Braking<br>Time              | 000.0s~100.0s                                                                                                               | 000.0            | ☆                     |
| P1.0.21          | Braking Use Rate                     | 000%~100%                                                                                                                   | 100              | \$                    |
| P1.0.22          | Carrier Frequency                    | 00.5kHz~16.0 kHz                                                                                                            | Machine<br>type  | $\overleftrightarrow$ |
| P1.0.23          | Fan Control                          | 0: Rotate at running<br>1: Continuous Running<br>2: Control based on Temperature                                            | 0                | *                     |
| P1.0.24          | Motor Overload<br>Protection         | 0: Prohibition<br>1: Curve 1<br>2: Curve 2<br>3: Curve 3                                                                    | 1                | \$                    |
| P1.0.25          | Motor Overload<br>Protection Level   | 00.20~10.00                                                                                                                 | 01.00            | ☆                     |
| P1.0.26          | Motor Overload<br>Alarm System       | 050%~100%                                                                                                                   | 080              | \$                    |

Chapter 5 Tables of Function Parameters

| Function code      | Function name                                                    | Setting scope                                                                                                                                                                                                                                                             | Factory<br>value | Modification<br>limit |
|--------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|
|                    | Gro                                                              | up P1.1: Expansion Group                                                                                                                                                                                                                                                  |                  |                       |
| P1.1.00            | Broken Line V/F Point 1<br>Frequency                             | 000.00Hz~P1.1.02                                                                                                                                                                                                                                                          | 000.00           | *                     |
| P1.1.01            | Broken Line V/F Point 1<br>Voltage                               | 000.0%~100.0%                                                                                                                                                                                                                                                             | 000.0            | *                     |
| P1.1.02            | Broken Line V/F Point 2<br>Frequency                             | P1.1.00~P1.1.04                                                                                                                                                                                                                                                           | 000.00           | *                     |
| P1.1.03            | Broken Line V/F Point 2<br>Voltage                               | 000.0%100.0%                                                                                                                                                                                                                                                              | 000.0            | *                     |
| P1.1.04            | Broken Line V/F Point 3<br>Frequency                             | P1.1.02~Rated frequency of motor                                                                                                                                                                                                                                          | 000.00           | *                     |
| P1.1.05            | Broken Line V/F Point 3<br>Voltage                               | 000.0%~100.0%                                                                                                                                                                                                                                                             | 000.0            | *                     |
| P1.1.06            | V/F Overexcited Gain                                             | 000~200                                                                                                                                                                                                                                                                   | 120              | **                    |
| P1.1.09            | Inversion Control Enable                                         | 0: Allow<br>1: Prohibit                                                                                                                                                                                                                                                   | 0                | X                     |
| P1.1.10            | Forward and Reverse<br>Dead Time                                 | 0000.0s~3000.0s                                                                                                                                                                                                                                                           | 0000.0           | $\Sigma_{\gamma}$     |
| P1.1.11            | Power-on Running<br>Selection                                    | 0: Running<br>1: Not running                                                                                                                                                                                                                                              | 0                | X                     |
| P1.1.12            | Droop Control                                                    | 00.00Hz~10.00Hz                                                                                                                                                                                                                                                           | 00.00            | χ                     |
| P1.1.20            | VF oscillation<br>suppression mode                               | 1~4                                                                                                                                                                                                                                                                       | 1                | *                     |
| P1.1.21            | Response time of VF slip<br>compensation                         | 0-10.0s                                                                                                                                                                                                                                                                   | 0.5              | *                     |
| P1.1.22            | VF online torque compensation gain                               | 0~200                                                                                                                                                                                                                                                                     | 100              | *                     |
| P1.1.34            | Tuning KP coefficient                                            | 1~200                                                                                                                                                                                                                                                                     | 100              | ${\swarrow}$          |
| P1.1.35            | Tuning KI coefficient                                            | 1~200                                                                                                                                                                                                                                                                     | 100              | ×7                    |
|                    |                                                                  | up P1.2: Expansion Group                                                                                                                                                                                                                                                  |                  |                       |
| P1.2.01            | VF oscillation<br>suppression                                    | 0~100                                                                                                                                                                                                                                                                     | Machine<br>type  |                       |
| P1.2.02            | Whether the carrier<br>frequency is adjusted with<br>temperature | 0: No 1: Yes                                                                                                                                                                                                                                                              | 1                | X                     |
| P1.2.11            | Speed tracking speed                                             | 1~100                                                                                                                                                                                                                                                                     | 20               | *                     |
| P1.2.12            | The DPWM switches the                                            | 00.00Hz~15.00Hz                                                                                                                                                                                                                                                           |                  | x >                   |
| P1.2.12<br>P1.2.13 | upper frequency<br>PWM modulation mode                           | Ones:<br>0: Asynchronous modulation<br>1: Synchronization modulation<br>Tens:<br>0: Three-phase modulation and<br>two-phase modulation coexist<br>1: All three - phase modulation<br>Hundreds:<br>0: Low frequency carrier limit<br>1: Low-frequency carrier<br>unlimited | 0                | ¥<br>*                |
| P1.2.14            | Random PWM depth                                                 | 00: Random PWM is invalid<br>01 $\sim$ 10: PWM carrier random<br>depth                                                                                                                                                                                                    | 00               | \$                    |
| P1.2.15            | Fast current limiting<br>enablement                              | 0: Not enabled<br>1: can make                                                                                                                                                                                                                                             | 1                | ${\sim}$              |
| P1.2.16            | Reserved                                                         |                                                                                                                                                                                                                                                                           |                  |                       |
| P1.2.20            | AVR function                                                     | 0: effective 1: invalid                                                                                                                                                                                                                                                   | 0                | $\overleftrightarrow$ |
| P1.2.29            | Enable phase short circuit detection                             | 0: Not enabled<br>1: can make                                                                                                                                                                                                                                             | 1                | ${\simeq}$            |

# Chapter 5 Tables of Function Parameters

| 5.3 | Group P2 - Input/Output Terminal Function |                              |                                                                           |                  |                       |  |  |
|-----|-------------------------------------------|------------------------------|---------------------------------------------------------------------------|------------------|-----------------------|--|--|
|     | Function<br>code                          | Function name                | Setting scope                                                             | Factory<br>value | Modification<br>limit |  |  |
|     |                                           |                              | Group P2.0: Basic Group                                                   |                  |                       |  |  |
|     | P2.0.00                                   | DilTerminal Function         | 0: No Function                                                            | 01               | *                     |  |  |
|     | P2.0.01                                   | <b>DI2</b> Terminal Function | 1: Forward (FWD)<br>2: Reverse (REV)                                      | 02               | *                     |  |  |
|     | P2.0.02                                   | DI3 Terminal Function        | 3: Three-wire Running Control                                             | 09               | *                     |  |  |
|     | P2.0.03                                   | DI4 Terminal Function        | 4: Forward Jogging                                                        | 10               | *                     |  |  |
|     |                                           | 211 10111111 10110101        | 5: Reverse Jogging                                                        |                  |                       |  |  |
|     |                                           |                              | 6: Terminal UP                                                            |                  |                       |  |  |
|     |                                           |                              | 7: Terminal DOWN                                                          |                  |                       |  |  |
|     |                                           |                              | 8: Free Stop<br>9: Multiplex Directive Terminal 1                         |                  |                       |  |  |
|     |                                           |                              | 10: Multiplex Directive Terminal 2                                        |                  |                       |  |  |
|     |                                           |                              | 11. Multiplex Directive Terminal 3                                        |                  |                       |  |  |
|     |                                           |                              | 12: Multiplex Directive Terminal 4                                        |                  |                       |  |  |
|     |                                           |                              | 13: Fault Reset (RESET)                                                   |                  |                       |  |  |
|     |                                           |                              | 14: Running Pause<br>15: External Fault Input                             |                  |                       |  |  |
|     |                                           |                              | 16: Acceleration & Deceleration                                           |                  |                       |  |  |
|     |                                           |                              | Time Selection Terminal 1                                                 |                  |                       |  |  |
|     |                                           |                              | 17: Acceleration & Deceleration                                           |                  |                       |  |  |
|     |                                           |                              | Time Selection Terminal 2                                                 |                  |                       |  |  |
|     |                                           |                              | 18: Frequency Source Selection<br>Terminal 1                              |                  |                       |  |  |
|     |                                           |                              | 19: Frequency Source Selection                                            |                  |                       |  |  |
|     |                                           |                              | Terminal 2                                                                |                  |                       |  |  |
|     |                                           |                              | 20: Frequency Source Selection                                            |                  |                       |  |  |
|     |                                           |                              | Terminal 3                                                                |                  |                       |  |  |
|     |                                           |                              | 21: Running Command Selection                                             |                  |                       |  |  |
|     |                                           |                              | Terminal 1<br>22: Running Command Selection                               |                  |                       |  |  |
|     |                                           |                              | Terminal 2                                                                |                  |                       |  |  |
|     |                                           |                              | 23: UP/DOWN Reference Reset                                               |                  |                       |  |  |
|     |                                           |                              | 24: Prohibition of Acceleration &                                         |                  |                       |  |  |
|     |                                           |                              | Deceleration<br>25: PID Pause                                             |                  |                       |  |  |
|     |                                           |                              | 25: PID Pause<br>26: PLC State Reset                                      |                  |                       |  |  |
|     |                                           |                              | 27: Wobbulating Pause                                                     |                  |                       |  |  |
|     |                                           |                              | 28: Counter Input                                                         |                  |                       |  |  |
|     |                                           |                              | 29: Counter Reset                                                         |                  |                       |  |  |
|     |                                           |                              | 30: Length Counting Input                                                 |                  |                       |  |  |
|     |                                           |                              | <ul><li>31: Length Reset</li><li>32: Torque Control Prohibition</li></ul> |                  |                       |  |  |
|     |                                           |                              | 33: PULS Impulse Input                                                    |                  |                       |  |  |
|     |                                           |                              | 34: Immediate DC Brake                                                    |                  |                       |  |  |
|     |                                           |                              | 35: External Fault                                                        |                  |                       |  |  |
|     |                                           |                              | Normally-closed Input                                                     |                  |                       |  |  |
|     |                                           |                              | 36: Frequency Modification<br>Enable                                      |                  |                       |  |  |
|     |                                           |                              | 37: PID Action Direction Negation                                         |                  |                       |  |  |
|     |                                           |                              | 38: External Stop Terminal 1                                              |                  |                       |  |  |
|     |                                           |                              | 39: External Stop Terminal 2                                              |                  |                       |  |  |
|     |                                           |                              | 40: PID Integral Stop                                                     |                  |                       |  |  |
|     |                                           |                              | 41: PID Parameter Switch                                                  |                  |                       |  |  |
|     |                                           |                              | 42: Speed Control/Torque Control<br>Switch                                |                  |                       |  |  |
| l   |                                           |                              | Switch                                                                    |                  |                       |  |  |

| Function            |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Factory | Modification                |
|---------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------|
| code                | Function name                                              | Setting scope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | value   | limit                       |
| P2.0.04~<br>P2.0.09 | Reserved                                                   | <ul> <li>43: Emergency Stop</li> <li>44: Deceleration DC Brake</li> <li>45: User-Defined Fault 1</li> <li>46: User-Defined Fault 2</li> <li>47: Running Time Reset</li> <li>48: Timer Input Terminal 1</li> <li>49: Timer Input Terminal 2</li> <li>50: Timer Reset Terminal 1</li> <li>51: Timer Reset Terminal 2</li> <li>52: Reserved</li> <li>53: Reserved</li> <li>54: Distance Reset</li> <li>55: Integral Computation Reset</li> <li>56: User Function 1</li> <li>57: User Function 2</li> <li>58: User Function 3</li> <li>59: User Function 4</li> <li>60. Start by tracing the rpm is</li> </ul> |         |                             |
|                     |                                                            | prohibited.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                             |
| P2.0.10             | Di Filtering Time                                          | 0.000s~1.000s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.010   | $\stackrel{\wedge}{\asymp}$ |
| P2.0.11             | External Terminal<br>Running Control Mode                  | 0: Two-line Type 1<br>1: Two- line Type 2<br>2: Three- line Type 1<br>3: Three-line Type 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0       | *                           |
| P2.0.12             | UP/DOWN Terminal<br>Change Rate                            | 00.001Hz/s~65.535 Hz/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 01.000  | \$                          |
| P2.0.13             | Minimum Input of<br>Curve 1                                | 00.00V~P2.0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00.00   |                             |
| P2.0.14             | Corresponding<br>reference for Minimum<br>Input of Curve 1 | -100.0%~100.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 000.0   | ${\approx}$                 |
| P2.0.15             | Maximum Input of<br>Curve 1                                | P2.0.13~10.00V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.00   | $\stackrel{\wedge}{\simeq}$ |
| P2.0.16             | Corresponding<br>reference for Maximum<br>Input of Curve 1 | -100.0%~100.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100.0   | ${}$                        |
| P2.0.17             | AVI Filtering time                                         | 00.00s~10.00s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00.10   | \$                          |
| P2.0.18             | Minimum Input of<br>Curve 2                                | 00.00V~P2.0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00.00   | \$                          |
| P2.0.19             | Corresponding<br>reference for Minimum<br>Input of Curve 2 | -100.0%~100.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 000.0   | \$                          |
| P2.0.20             | Maximum Input of<br>Curve 2                                | P2.0.18~10.00V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.0    | ${\curvearrowright}$        |
| P2.0.21             | Corresponding<br>reference for Maximum<br>Input of Curve 2 | -100.0%~100.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100.0   | ☆                           |
| P2.0.22             | ACI Filtering time                                         | 0.00s~10.00s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00.10   | $\overrightarrow{x}$        |
| P2.0.23             | Minimum Input of<br>PULS                                   | 0.00kHz~P2.0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 000.00  | \$                          |
| P2.0.24             | Corresponding<br>reference for Minimum<br>Input of PULS    | -100.0%~100.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 000.0   | ☆                           |
| P2.0.25             | Maximum Input of<br>PULS                                   | P2.0.23~100.00 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 050.00  | ${\swarrow}$                |

| Function code       | Function name                                        | Setting scope                          | Factory<br>value | Modification<br>limit |
|---------------------|------------------------------------------------------|----------------------------------------|------------------|-----------------------|
| P2.0.26             | Corresponding reference for<br>Maximum Input of PULS | -100.0%~100.0%                         | 100.0            | ☆                     |
| P2.0.27             | PULS Filtering time                                  | 00.00s~10.00s                          | 00.10            | $\overleftrightarrow$ |
| P2.0.28             | Reserved                                             | 0: No Function                         |                  |                       |
| P2.0.29             | T1 Relay Function Selection                          | 1: Frequency inverter under<br>Running | 1                | \$                    |
| P2.0.30~<br>P2.0.32 | Reserved                                             |                                        |                  |                       |

Chapter 5 Tables of Function Parameters

| Function<br>code | Function name                  | Setting scope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Factory<br>value | Modificatio<br>n limit |
|------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------|
|                  |                                | <ul> <li>35: Module Temperature Arrival</li> <li>36: Output Current Over-limit</li> <li>37: Lower Frequency Arrival</li> <li>(also output when shut down)</li> <li>38: Alarm Output</li> <li>39: PLC Phase Completed</li> <li>40: Current Running Time</li> <li>Arrival</li> <li>41: Fault Output (Not Output for</li> <li>Under-voltage)</li> <li>42: Timer 1 Timing Arrival</li> <li>43: Timer 2 Timing Arrival</li> <li>44: Timer 1 Timing Arrival but</li> <li>Timer 2 Timing Not Arrival</li> <li>45: User Function 1</li> <li>46: User Function 2</li> <li>47: User Function 3</li> <li>48: User Function 4</li> <li>49: User Function 5</li> <li>50: Synchronization</li> <li>Intermediate Relay M1</li> <li>51: Synchronization</li> <li>Intermediate Relay M2</li> <li>52: Synchronization</li> <li>Intermediate Relay M4</li> <li>54: Synchronization</li> <li>Intermediate Relay M5</li> <li>55: Distance over Zero</li> <li>56: Distance Set value 1 Arrival</li> <li>57: Distance Set value 2 Arrival</li> <li>58: Operation Result 2 greater</li> <li>than 0</li> </ul> | value            |                        |
| P2.0.33          | Analog Output FM1<br>Reference | <ul> <li>0: Run frequency</li> <li>1: Reference frequency</li> <li>2: Output Current</li> <li>3: Output Torque (Absolute</li> <li>Value of Torque)</li> <li>4: Output Power</li> <li>5: Output Voltage</li> <li>6: PULSE Impulse Input</li> <li>7: AVI Voltage</li> <li>8: ACI Voltage</li> <li>9: Keyboard Potentiometer</li> <li>Voltage</li> <li>10: Actual Length Value</li> <li>11: Actual Counting Value</li> <li>12: Communication Reference</li> <li>13: Motor Speed</li> <li>14: Output Current</li> <li>15: Bus Voltage</li> <li>16: Output Torque</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00               | $\overleftrightarrow$  |

Chapter 5 Tables of Function Parameters

| Function code               | Function name                                                         | Setting scope                                                                                                                                                                                                                                                                                                                                                                                 | Factory<br>value | Modification<br>limit   |  |  |
|-----------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------|--|--|
| P2.0.35                     | Reserved                                                              | <ul><li>17: Operation Result 1</li><li>18: Operation Result 2</li><li>19: Operation Result 3</li><li>20: Operation Result 4</li></ul>                                                                                                                                                                                                                                                         |                  |                         |  |  |
| P2.0.36                     | Analog FM1 Output<br>Offset                                           | -100.0%~100.0%                                                                                                                                                                                                                                                                                                                                                                                | 000.0            | ☆                       |  |  |
| P2.0.37                     | Analog FM1 Output<br>Gains                                            | -10.00~10.00                                                                                                                                                                                                                                                                                                                                                                                  | 01.00            | \$                      |  |  |
| Group P2.1: Expansion Group |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                               |                  |                         |  |  |
| P2.1.00                     | Valid Model Selection 1<br>of Terminal DI                             | 0: Active High Level<br>1: Active Low Level<br>Ones: DI1<br>Tens: DI2<br>Hundreds: DI3<br>Thousands: DI4<br>Ten Thousands: Reserved                                                                                                                                                                                                                                                           | 0                | *                       |  |  |
| P2.1.02                     | Analog Input Curve<br>Selection                                       | Ones: Curve selected by AVI<br>Tens: Curve selected by ACI<br>1: Curve 1 2: Curve 2<br>3: Curve 3 4: Curve 4<br>Hundreds: Input resolution of<br>AVI<br>Thousands: Input resolution of<br>ACI<br>Ten Thousands: Input resolution<br>of keyboard potentiometer<br>0: 0.01Hz 1: 0.02 Hz<br>2:0.05 Hz 3:0.10 Hz<br>4: 0.20Hz 5: 0.50Hz<br>6: 01.00 Hz (Keyboard<br>Potentiometer is ineffective) | 31121            | *                       |  |  |
| P2.1.03                     | Selection for Curve<br>less than Min.<br>Reference                    | 0: Corresponding Min. Input<br>Reference<br>1: 0.0%<br>Ones: AVI<br>Tens: ACI                                                                                                                                                                                                                                                                                                                 | H.00             | *                       |  |  |
| P2.1.04                     | Min. Input of Curve 3                                                 | 00.00V~P2.1.06                                                                                                                                                                                                                                                                                                                                                                                | 00.00            | \$                      |  |  |
| P2.1.05                     | Corresponding<br>reference for Min.<br>Input of Curve 3               | -100.0%~100.0%                                                                                                                                                                                                                                                                                                                                                                                | 000.0            |                         |  |  |
| P2.1.06                     | Curve 3 Inflection<br>Point 1 Input                                   | P2.1.04~P2.1.08                                                                                                                                                                                                                                                                                                                                                                               | 03.00            | ☆                       |  |  |
| P2.1.07                     | Corresponding<br>reference for Curve 3<br>Inflection Point 1<br>Input | -100.0%~100.0%                                                                                                                                                                                                                                                                                                                                                                                | 030.00           | ${\leftrightarrow}$     |  |  |
| P2.1.08                     | Curve 3 Inflection<br>Point 2 Input                                   | P2.1.06~P2.1.10                                                                                                                                                                                                                                                                                                                                                                               | 06.00            | $\stackrel{\sim}{\sim}$ |  |  |
| P2.1.09                     | Corresponding<br>reference for Curve 3<br>Inflection Point 2<br>Input | -100.0%~100.0%                                                                                                                                                                                                                                                                                                                                                                                | 060.00           | *                       |  |  |
| P2.1.10                     | Max. input of Curve 3                                                 | P2.1.08~10.00V                                                                                                                                                                                                                                                                                                                                                                                | 10.00            | \$                      |  |  |

|                    |                                                                    | Chapte                                                                  | er 5 Tables of   | f Function Parar            |
|--------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------|------------------|-----------------------------|
| Function<br>code   | Function name                                                      | Setting scope                                                           | Factory<br>value | Modification<br>limit       |
| P2.1.11            | Corresponding reference<br>for Max. input of Curve 3               | -100.0%~100.0%                                                          | 100.00           | ${\swarrow}$                |
| P2.1.12            | Min. Input of Curve 4                                              | 00.00V~P2.1.14                                                          | 00.00            | $\stackrel{\sim}{\sim}$     |
| P2.1.13            | Corresponding reference<br>for Min. Input of Curve 4               | -100.0%~100.0%                                                          | -100.0           |                             |
| P2.1.14            | Curve 4 Inflection Point 1<br>Input                                | P2.1.12~P2.1.16                                                         | 03.00            | ${\simeq}$                  |
| P2.1.15            | Corresponding reference<br>for Curve 4 Inflection<br>Point 1 Input | -100.0%~100.0%                                                          | -030.00          | Å                           |
| P2.1.16            | Curve 4 Inflection Point 2<br>Input                                | P2.1.14~P2.1.18                                                         | 06.00            | \$                          |
| P2.1.17            | Corresponding reference<br>for Curve 4 Inflection<br>Point 2 Input | -100.0%~100.0%                                                          | 030.0            | $\overleftarrow{\kappa}$    |
| P2.1.18            | Max. input of Curve 4                                              | P2.1.16~10.00V                                                          | 10.00            | $\stackrel{\wedge}{\simeq}$ |
| P2.1.19            | Corresponding reference<br>for Max. input of Curve 4               | -100.0%~100.0%                                                          | 100.0            | $\overleftarrow{\omega}$    |
| P2.1.20<br>P2.1.21 | Reserved                                                           |                                                                         |                  |                             |
| P2.1.22            | T1 relay output valid state                                        | 0:Positive logic<br>1:Negative logic                                    | 0                | \$                          |
| P2.1.23            | AVI Terminal Function as<br>Digital Input                          | 00: Use as Normal Analog<br>01 ~ 59: Digital Input Terminal<br>Function | 00               | *                           |
| P2.1.24            | ACI Terminal Function as<br>Digital Input                          | 00: Use as Normal Analog<br>01~59: Digital Input Terminal<br>Function   | 00               | *                           |
| P2.1.25            | Valid state selection of analog input                              | 0: Active High Level<br>1: Active Low Level<br>Ones: AVI<br>Tens: ACI   | 0                | *                           |
| P2.1.26            | DI1 effective Delay                                                | 0.0s~3600.0s                                                            | 0000.0           | $\stackrel{\sim}{\sim}$     |
| P2.1.27            | DI2 effective Delay                                                | 0.0s~3600.0s                                                            | 0000.0           | ${\sim}$                    |
| P2.1.28            | DI3 effective Delay                                                | 0.0s~3600.0s                                                            | 0000.0           | $\stackrel{\wedge}{\sim}$   |
| P2.1.29            | Reserved                                                           |                                                                         |                  |                             |
| P2.1.30            | T1 Delay                                                           | 0.0s~3600.0s                                                            | 0000.0           |                             |
| P2.1.31            | Reserved                                                           |                                                                         |                  |                             |
| P2.1.32            | DI1 ineffective delay                                              | 0.0s~3600.0s                                                            | 0000.0           |                             |
| P2.1.33            | DI2 ineffective delay                                              | 0.0s~3600.0s                                                            | 0000.0           | \$                          |
| P2.1.34            | DI3 ineffective delay                                              | 0.0s~3600.0s                                                            | 0000.0           | ☆                           |
|                    |                                                                    | Group P2.2 Auxiliary Group                                              |                  |                             |
| P2.2.00            | Accumulative Power-on<br>Arrival Time Reference                    | 00000h~65000h                                                           | 00000            | \$                          |
| P2.2.01            | Accumulative Running<br>Arrival Time Reference                     | 00000h~65000h                                                           | 00000            | ${\leftrightarrow}$         |
| P2.2.02            | Detected Reference<br>frequency Width upon<br>Arrival              | 000.0%~100.0%                                                           | 000.0            | $\dot{\mathbf{x}}$          |
| P2.2.03            | Frequency Detection<br>FDT1                                        | 000.00Hz ~ Highest frequency                                            | 050.00           | \$                          |
| P2.2.04            | FDT1 Lagged Value                                                  | 000.0%~100.0%                                                           | 005.0            | \$                          |

| Chapter 5 | Tables o | of Function | Parameters |
|-----------|----------|-------------|------------|
|-----------|----------|-------------|------------|

| Function code | Function name                                        | Setting scope                                                        | Factory<br>value | Modification<br>limit                                |
|---------------|------------------------------------------------------|----------------------------------------------------------------------|------------------|------------------------------------------------------|
| P2.2.05       | Frequency Detection FDT2                             | 000.00Hz ~ Highest frequency                                         | 050.00           | \$                                                   |
| P2.2.06       | FDT2 Lagged Value                                    | 000.0%~100.0%                                                        | 005.0            | \$                                                   |
| P2.2.07       | Detected Frequency Value 1<br>upon Arbitrary Arrival | 000.00Hz ~ Highest frequency                                         | 050.00           | \$                                                   |
| P2.2.08       | Detected Frequency 1 Width<br>upon Arbitrary Arrival | 000.0%~100.0%                                                        | 000.0            | $\stackrel{\wedge}{\asymp}$                          |
| P2.2.09       | Detected Frequency Value 2<br>upon Arbitrary Arrival | 000.00Hz ~ Highest frequency                                         | 050.0            | $\stackrel{\wedge}{\asymp}$                          |
| P2.2.10       | Detected Frequency 2 Width<br>upon Arbitrary Arrival | 000.0%~100.0%                                                        | 000.0            | $\stackrel{\wedge}{\asymp}$                          |
| P2.2.11       | Zero Current Detection<br>Level                      | 000.0%~300.0%<br>(100.0% corresponding to<br>rated current of motor) | 005.0            | $\stackrel{\scriptstyle \star}{\scriptstyle \times}$ |
| P2.2.12       | Delay Time for Zero Current<br>Detection             | 000.01s~600.00s                                                      | 000.10           | Ŕ                                                    |
| P2.2.13       | Output Current Over-limit<br>Value                   | 000.0%: No detection<br>000.1%~300.0%                                | 200.0            |                                                      |
| P2.2.14       | Delay Time for Current<br>Over-limit Detection       | 000.00s~600.00s                                                      | 000.00           |                                                      |
| P2.2.15       | Current Level Detection 1                            | 000.0%~300.0%                                                        | 100.0            | $\overleftrightarrow$                                |
| P2.2.16       | Detection Width of Current<br>Level 1                | 000.0%~300.0%                                                        | 000.0            |                                                      |
| P2.2.17       | Current Level Detection 2                            | 000.0%~300.0%                                                        | 100.0            | $\overleftrightarrow$                                |
| P2.2.18       | Detection Width of Current<br>Level 2                | 000.0%~300.0%                                                        | 000.0            |                                                      |
| P2.2.19       | AVI Input Lower Limit                                | 00.00V~P2.2.20                                                       | 03.10            | \$                                                   |
| P2.2.20       | AVI Input Upper Limit                                | P2.2.19~11.00V                                                       | 06.80            | \$                                                   |
| P2.2.21       | Model Temperature Arrival<br>Reference               | 000°C~100°C                                                          | 075              | \$                                                   |
| P2.2.22       | Current Running Arrival<br>Time Reference            | 0000.0min~6500.0min                                                  | 0000.0           | *                                                    |

# 5.4 Group P3 - Programmable Function

| Function code | Function name                     | Setting scope                                                                                                                                              | Factory<br>value | Modification<br>limit |
|---------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|
| code          |                                   | Group P3.0: Basic Group                                                                                                                                    | value            | IIIIIt                |
| P3.0.00       | Simple PLC Running<br>Mode        | 0: End of Single Running and<br>Stop<br>1: End of Single Running and<br>Save Final Value<br>2: Continuous Running<br>3: Cycle N Times                      | 0                | \$                    |
| P3.0.01       | Cycle Times N                     | 00000~65000                                                                                                                                                | 00000            | $\overleftrightarrow$ |
| P3.0.02       | Option of PLC<br>Power-off Memory | Ones: Option of Power-off<br>Memory<br>0: No Power-off Memory<br>1: Power-off Memory<br>Tens: Stop Memory Selection<br>0: No Stop Memory<br>1: Stop Memory | 00               | \$                    |
| P3.0.03       | Phase Directive 0                 | -100.0%~100.0%                                                                                                                                             | 000.0            | $\overleftrightarrow$ |

| Function | Function name         | Setting scope                                                     | Factory | Modification                              |
|----------|-----------------------|-------------------------------------------------------------------|---------|-------------------------------------------|
| code     | r unetion name        | Setting scope                                                     | value   | limit                                     |
| P3.0.04  | Phase 0 Running Time  | 0000.0s~6500.0s                                                   | 0000.0  | $\overleftrightarrow$                     |
| P3.0.05  | Phase Directive 1     | -100.0%~100.0%                                                    | 000.0   | ☆                                         |
| P3.0.06  | Phase 1 Running Time  | 0000.0s~6500.0s                                                   | 0000.0  | \$                                        |
| P3.0.07  | Phase Directive 2     | -100.0%~100.0%                                                    | 000.0   | \$                                        |
| P3.0.08  | Phase 2 Running Time  | 0000.0s~6500.0s                                                   | 0000.0  | <br>☆                                     |
| P3.0.09  | Phase Directive 3     | -100.0%~100.0%                                                    | 000.0   | ☆<br>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |
|          |                       | 0000.0s~6500.0s                                                   | 0000.0  |                                           |
| P3.0.10  | Phase 3 Running Time  |                                                                   |         |                                           |
| P3.0.11  | Phase Directive 4     | -100.0%~100.0%                                                    | 000.0   | ☆ .                                       |
| P3.0.12  | Phase 4 Running Time  | 0000.0s~6500.0s                                                   | 0000.0  | \$                                        |
| P3.0.13  | Phase Directive 5     | -100.0%~100.0%                                                    | 000.0   | \$                                        |
| P3.0.14  | Phase 5 Running Time  | 0000.0s~6500.0s                                                   | 0000.0  | $\Rightarrow$                             |
| P3.0.15  | Phase Directive 6     | -100.0%~100.0%                                                    | 000.0   | \$                                        |
| P3.0.16  | Phase 6 Running Time  | 0000.0s~6500.0s                                                   | 0000.0  | $\overleftrightarrow$                     |
| P3.0.17  | Phase Directive 7     | -100.0%~100.0%                                                    | 000.0   | \$                                        |
| P3.0.18  | Phase 7 Running Time  | 0000.0s~6500.0s                                                   | 0000.0  | \$                                        |
| P3.0.19  | Phase Directive 8     | -100.0%~100.0%                                                    | 000.0   | $\overrightarrow{\mathbf{x}}$             |
| P3.0.20  | Phase 8 Running Time  | 0000.0s~6500.0s                                                   | 0000.0  | ☆                                         |
| P3.0.21  | Phase Directive 9     | -100.0%~100.0%                                                    | 0000.0  |                                           |
|          |                       |                                                                   | 0000.0  |                                           |
| P3.0.22  | Phase 9 Running Time  | 0000.0s~6500.0s                                                   |         |                                           |
| P3.0.23  | Phase Directive 10    | -100.0%~100.0%                                                    | 000.0   | \$                                        |
| P3.0.24  | Phase 10 Running Time | 0000.0s~6500.0s                                                   | 0000.0  | \$                                        |
| P3.0.25  | Phase Directive 11    | -100.0%~100.0%                                                    | 000.0   | ☆                                         |
| P3.0.26  | Phase 11 Running Time | 0000.0s~6500.0s                                                   | 0000.0  | \$                                        |
| P3.0.27  | Phase Directive 12    | -100.0%~100.0%                                                    | 000.0   | \$                                        |
| P3.0.28  | Phase 12 Running Time | 0000.0s~6500.0s                                                   | 0000.0  | \$                                        |
| P3.0.29  | Phase Directive 13    | -100.0%~100.0%                                                    | 000.0   | \$                                        |
| P3.0.30  | Phase 13 Running Time | 0000.0s~6500.0s                                                   | 0000.0  | \$                                        |
| P3.0.31  | Phase Directive 14    | -100.0%~100.0%                                                    | 000.0   | \$                                        |
| P3.0.32  | Phase 14 Running Time | 0000.0s~6500.0s                                                   | 0000.0  | \$                                        |
| P3.0.33  | Phase Directive 15    | -100.0%~100.0%                                                    | 000.0   | \$                                        |
| P3.0.34  | Phase 15 Running Time | 0000.0s~6500.0s                                                   | 0000.0  | \$                                        |
| P3.0.35  | Phase 0 attribution   | Ones: Acceleration &                                              | H.000   | \$                                        |
| P3.0.36  | Phase 1 attribution   | Deceleration Time Selection                                       | H.000   | \$                                        |
| P3.0.37  | Phase 2 attribution   | (Invalid Multiplex Directive)                                     | H.000   | \$                                        |
| P3.0.38  | Phase 3 attribution   | 0: Acceleration & Deceleration                                    | H.000   | \$                                        |
| P3.0.39  | Phase 4 attribution   | Time 1                                                            | H.000   | \$                                        |
| P3.0.40  | Phase 5 attribution   | 1: Acceleration & Deceleration                                    | H.000   | \$                                        |
| P3.0.41  | Phase 6 attribution   | Time 2                                                            | H.000   | \$                                        |
| P3.0.42  | Phase 7 attribution   | 2: Acceleration & Deceleration<br>Time 3                          | H.000   | \$                                        |
| P3.0.43  | Phase 8 attribution   | 3: Acceleration & Deceleration                                    | H.000   | \$                                        |
| P3.0.44  | Phase 9 attribution   | Time 4                                                            | H.000   | \$                                        |
| P3.0.45  | Phase 10 attribution  | Tens: Frequency Source<br>Selection (Valid Multiplex<br>Directive | H.000   | *                                         |

| Function code | Function name                               | Setting scope                                                                                                                                                                                                                                                                                                                     | Factory value | Modification limit        |
|---------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------|
| P3.0.46       | Phase 11 attribution                        | 0: Current Phase Directive                                                                                                                                                                                                                                                                                                        | H.000         | ${\swarrow}$              |
| P3.0.47       | Phase 12 attribution                        | 1: Keyboard Potentiometer                                                                                                                                                                                                                                                                                                         | H.000         | ${\swarrow}$              |
| P3.0.48       | Phase 13 attribution                        | 2: Keyboard Frequency Reference                                                                                                                                                                                                                                                                                                   | H.000         | $\stackrel{\wedge}{\sim}$ |
| P3.0.49       | Phase 14 attribution                        | 3: AVI Input                                                                                                                                                                                                                                                                                                                      | H.000         | ${\swarrow}$              |
| P3.0.50       | Phase 15 attribution                        | <ul> <li>4: ACI Input</li> <li>5: PULS Impulse Reference (DI4)</li> <li>6: PID Reference</li> <li>7: Operation Result 1</li> <li>8: Operation Result 2</li> <li>9: Operation Result 3</li> <li>A: Operation Result 4</li> <li>Hundreds: running direction</li> <li>0: Default direction</li> <li>1: Reversed direction</li> </ul> | H.000         | ${\not\sim}$              |
| P3.0.51       | Simple PLC Running<br>Time Unit             | 0:Second<br>1:Hour<br>2:Minute                                                                                                                                                                                                                                                                                                    | 0             | ${\leftrightarrow}$       |
|               | G                                           | roup P3.1: Expansion Group                                                                                                                                                                                                                                                                                                        |               |                           |
|               |                                             | 0: Ineffective                                                                                                                                                                                                                                                                                                                    |               |                           |
| P3.1.00       | Timing Function Selection                   |                                                                                                                                                                                                                                                                                                                                   | 0             | *                         |
| P3.1.01       | Fixed Running Time<br>Selection             | 0: Digital Reference (P3.1.02)<br>1: External Terminal AVI<br>Reference<br>2: External Terminal ACI<br>Reference<br>(Analog input range corresponds<br>to P3.1.02)                                                                                                                                                                | 0             | *                         |
| P3.1.02       | Fixed Running Time                          | 0000.0min/h~6500.0min/h (unit depends on P3.1.00)                                                                                                                                                                                                                                                                                 | 0000.0        | *                         |
| P3.1.03       | Wobbulating Reference<br>Mode               | 0: Relative to Reference<br>frequency<br>1: Relative to Highest Frequency                                                                                                                                                                                                                                                         | 0             | *                         |
| P3.1.04       | Wobbulating Range                           | 000.0%~100.0%                                                                                                                                                                                                                                                                                                                     | 000.0         | *                         |
| P3.1.05       | Kicking Range                               | 00.0%~50.0%                                                                                                                                                                                                                                                                                                                       | 00.0          | $\overleftrightarrow$     |
| P3.1.06       | Wobbulating Cycle                           | 0000.1s~3000.0s                                                                                                                                                                                                                                                                                                                   | 0010.0        | X                         |
| P3.1.07       | Rise Time of Wobbulating<br>Triangular Wave | 000.0%~100.0%                                                                                                                                                                                                                                                                                                                     | 050.0         | ${\sim}$                  |
| P3.1.08       | Reference Length                            | 00000m~65535m                                                                                                                                                                                                                                                                                                                     | 01000         |                           |
| P3.1.09       | Actual Length                               | 00000m~65535m                                                                                                                                                                                                                                                                                                                     | 00000         | X                         |
| P3.1.10       | Impulse Count per meter                     | 00001~6553.5                                                                                                                                                                                                                                                                                                                      | 0100.0        | X                         |
| P3.1.11       | Reference Count Value                       | 00001~65535                                                                                                                                                                                                                                                                                                                       | 01000         | ×<br>∽                    |
| P3.1.12       | Designated Count Value                      | 00001~65535                                                                                                                                                                                                                                                                                                                       | 01000         | ${\swarrow}$              |
| P3.1.13       | Distance Set value 1                        | -3200.0~3200.0                                                                                                                                                                                                                                                                                                                    | 0000.0        | Å                         |
| P3.1.14       | Distance Set value 2                        | -3200.0~3200.0                                                                                                                                                                                                                                                                                                                    | 0000.0        | \$                        |
| P3.1.15       | Impulse Count per<br>Distance               | 000.00~600.00                                                                                                                                                                                                                                                                                                                     | 000.00        | ${\leftarrow}$            |

| Function |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Factory | Modification |
|----------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------|
| code     | Function name                                    | Setting scope                                                                                                                                                                                                                                                                                                                                                                                                                                                 | value   | limit        |
|          | Group P3.2                                       | 2: Built-in Logic PLC Function Group                                                                                                                                                                                                                                                                                                                                                                                                                          |         |              |
| P3.2.00  | Intermediate Delay<br>Relay Control              | 0: the input of this relay is<br>determined by this Relay Control<br>Word A<br>1: the input of this relay is<br>determined by this Relay Control<br>Word B<br>2: the input of this relay is<br>determined by this Relay Control<br>Word C<br>Ones: Relay 1 (M1)<br>Tens: Relay 2 (M2)<br>Hundreds: Relay 3 (M3)<br>Thousands: Relay 4 (M4)<br>Ten Thousands: Relay 5(M5)                                                                                      | 00000   | *            |
| P3.2.01  | Intermediate Relay<br>Control Word A             | 0: Reference 0<br>1: Reference 1<br>Ones: M1<br>Tens: M2<br>Hundreds: M3<br>Thousands: M4<br>Ten Thousands: M5                                                                                                                                                                                                                                                                                                                                                | 00000   | Å            |
| P3.2.02  | Intermediate Delay<br>Relay M1 Control<br>Word B | Ones: Control Logic<br>0: Input 1<br>1: Input 1 and NOT                                                                                                                                                                                                                                                                                                                                                                                                       | 00000   | *            |
| P3.2.03  | Intermediate Delay<br>Relay M2 Control<br>Word B | <ul><li>2: Input 1 and Input 2 AND</li><li>3: Input 1 and Input 2 OR</li><li>4: Input 1 and Input 2 XOR</li></ul>                                                                                                                                                                                                                                                                                                                                             | 00000   | *            |
| P3.2.04  | Intermediate Delay<br>Relay M3 Control<br>Word B | 5: the valid reference of Input 1 is<br>valid<br>the valid Reference of Input 2 is                                                                                                                                                                                                                                                                                                                                                                            | 00000   | *            |
| P3.2.05  | Intermediate Delay<br>Relay M4 Control<br>Word B | invalid<br>6: Valid reference of Input 1 Rise<br>Edge is valid                                                                                                                                                                                                                                                                                                                                                                                                | 00000   | *            |
|          |                                                  | Valid reference of Input 2 Rise Edge<br>is invalid<br>7: Reverse valid signal of Input 1<br>Rising Edge<br>8: Input 1 Rise Edge is valid and<br>output a impulse signal with width<br>of 200ms<br>9: Input 1 Rise Edge and Input 2<br>AND<br>Hundreds and Tens: Input 1 selection<br>0~3: DI1~DI4<br>4~9: Reserved<br>10~14: M1~M5<br>15~16: AVI,ACI<br>17~19: Standby<br>20~79: Corresponding output<br>function 00~59 of multifunctional<br>output terminal |         |              |

| Function code | Function name                                 | Setting scope                                                                                                                                                                                                                                                                              | Factory<br>value | Modification<br>limit   |
|---------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------|
| P3.2.06       | Intermediate Delay Relay<br>M5 Control Word B | Ten Thousands and Thousands:<br>Input 2 selection<br>0~3: DI1~DI4<br>4~9: Reserved<br>10~14: M1~M5<br>15~16: AVI,ACI<br>17~19: Standby<br>20~59: Corresponding output<br>function 00~39 of multifunctional<br>output terminal                                                              | 00000            | *                       |
| P3.2.07       | Intermediate Delay Relay<br>M1 Control Word C | Tens Ones: 00~59<br>Output Function 00~59                                                                                                                                                                                                                                                  | 0000             | *                       |
| P3.2.08       | Intermediate Delay Relay<br>M2 Control Word C | Corresponding to Digital Input<br>Terminal                                                                                                                                                                                                                                                 | 0000             | *                       |
| P3.2.09       | Intermediate Delay Relay<br>M3 Control Word C | Thousands Hundreds:                                                                                                                                                                                                                                                                        | 0000             | *                       |
| P3.2.10       | Intermediate Delay Relay<br>M4 Control Word C | Output Function 00~59<br>Corresponding to                                                                                                                                                                                                                                                  | 0000             | *                       |
| P3.2.11       | Intermediate Delay Relay<br>M5 Control Word C | Multi-functional Output Terminal                                                                                                                                                                                                                                                           | 0000             | *                       |
| P3.2.12       | M1 Connection Delay Time                      | 0.0s~3600.0s                                                                                                                                                                                                                                                                               | 0000.0           | ☆                       |
| P3.2.13       | M2 Connection Delay Time                      | 0.0s~3600.0s                                                                                                                                                                                                                                                                               | 0.0000           | ☆                       |
| P3.2.14       | M3 Connection Delay Time                      | 0.0s~3600.0s                                                                                                                                                                                                                                                                               | 0.0000           | \$                      |
| P3.2.15       | M4 Connection Delay Time                      | 0.0s~3600.0s                                                                                                                                                                                                                                                                               | 0000.0           | ☆                       |
| P3.2.16       | M5 Connection Delay Time                      | 0.0s~3600.0s                                                                                                                                                                                                                                                                               | 0.0000           | <br>☆                   |
| P3.2.17       | M1 Disconnection Delay<br>Time                | 0.0s~3600.0s                                                                                                                                                                                                                                                                               | 0000.0           | *                       |
| P3.2.18       | M2 Disconnection Delay<br>Time                | 0.0s~3600.0s                                                                                                                                                                                                                                                                               | 0000.0           | X                       |
| P3.2.19       | M3 Disconnection Delay<br>Time                | 0.0s~3600.0s                                                                                                                                                                                                                                                                               | 0000.0           | ${}$                    |
| P3.2.20       | M4 Disconnection Delay<br>Time                | 0.0s~3600.0s                                                                                                                                                                                                                                                                               | 0000.0           | $\stackrel{\sim}{\sim}$ |
| P3.2.21       | M5 Disconnection Delay<br>Time                | 0.0s~3600.0s                                                                                                                                                                                                                                                                               | 0000.0           | $\stackrel{\sim}{\sim}$ |
| P3.2.22       | Valid State Option of<br>Intermediate Relay   | 0: Not Negation<br>1: Negation<br>Ones: M1<br>Tens: M2<br>Hundreds: M3<br>Thousands: M4<br>Ten Thousands: M5                                                                                                                                                                               | 00000            | \$                      |
| P3.2.23       | Internal Timer Control Word                   | Ones: Timing Control 1 of Timer<br>Tens: Timing Control 2 of Timer<br>0: Timer Running<br>1: Controlled by Timer Input<br>Terminal 1<br>2: Negation Control of Timer<br>Input Terminal 1<br>3: Controlled by Timer Input<br>Terminal 2<br>4: Negation Control of Timer<br>Input Terminal 2 | 00000            | \$                      |

| Function code | Function name                                | Setting scope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Factory<br>value | Modificatior<br>limit |
|---------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|
| P3.2.23       | Internal Timer Control<br>Word               | Hundreds: Timer 1 Reset Control<br>Thousands: Timer 2 Reset Control<br>0: Controlled by Timer Reset<br>Terminal 1<br>1: Controlled by Timer Reset<br>Terminal 2<br>Ten Thousands: Timing Unit<br>0: Second<br>1: Minute<br>2: Hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00000            | Å                     |
| P3.2.24       | Timing Time of Timer 1                       | 0.0s~3600.0s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0000.0           | \$                    |
| P3.2.25       | Timing Time of Timer 2                       | 0.0s~3600.0s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0000.0           | \$                    |
| P3.2.26       | Operation Module<br>Control                  | <ol> <li>Add Operation</li> <li>Subtraction Operation</li> <li>Multiply Operation</li> <li>Division Operation</li> <li>Greater than Judgment</li> <li>Equal to Judgment</li> <li>Equal to or Greater than Judgment</li> <li>Integration</li> <li>~F: Reserved</li> <li>Ones: Operation 1</li> <li>Tens: Operation 2</li> <li>Hundreds: Operation 3</li> <li>Thousands: Operation 4</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H.0000           | À                     |
| P3.2.27       | Operation Setting<br>Coefficient<br>Property | 0: Operate the Setting Coefficient by<br>multiplication without decimal<br>1: Operate the Setting Coefficient by<br>multiplication with one decimal<br>2: Operate the Setting Coefficient by<br>multiplication with two decimals<br>3: Operate the Setting Coefficient by<br>multiplication with three decimals<br>4: Operate the Setting Coefficient by<br>multiplication with four decimals<br>5: Operate the Setting Coefficient by<br>division without decimal<br>6: Operate the Setting Coefficient by<br>division with one decimal<br>7: Operate the Setting Coefficient by<br>division with two decimals<br>8: Operate the Setting Coefficient by<br>division with two decimals<br>9: Operate the Setting Coefficient by<br>division with three decimals<br>9: Operate the Setting Coefficient by<br>division with four decimals<br>A: Operate the Setting Coefficient by<br>division with one decimal<br>B: Operate the Setting Coefficient by<br>division with one decimal<br>D: Operate the Setting Coefficient by<br>division with two decimals<br>D: Operate the Setting Coefficient by<br>division with two decimals<br>D: Operate the Setting Coefficient by<br>division with three decimals<br>E: Operate the Setting Coefficient by<br>division with three decimals<br>D: Operate the Setting Coefficient by<br>division with three decimals<br>E: Operate the Setting Coefficient by<br>division with three decimals<br>D: Operate the Setting Coefficient by<br>division with three decimals | H.0000           | *                     |

| Function code | Function name                                   | Setting scope                                                                                                                                                                                                                                                               | Factory value | Modification<br>limit |
|---------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------|
| P3.2.27       | Operation<br>Setting<br>Coefficient<br>Property | (The setting coefficient of A, B, C, D, E is<br>the address number of function code)<br>Ones: Operation 1<br>Tens: Operation 2<br>Hundreds: Operation 3<br>Thousands: Operation 4                                                                                           | H.0000        | ☆                     |
| P3.2.28       | Input A of<br>Operation 1                       | Thousands, Hundreds, Tens and Ones: express<br>address of Input A of Operation 1<br>Ten Thousands: express input operation<br>model<br>0: Input is operation by unsigned number<br>1: Input is operation by signed number                                                   | 00000         | ${\sim}$              |
| P3.2.29       | Input B of<br>Operation 1                       | <ul> <li>Thousands, Hundreds, Tens and Ones:</li> <li>express address of Input B of Operation 1</li> <li>Ten Thousands: express input operation</li> <li>model</li> <li>0: Input is operation by unsigned number</li> <li>1: Input is operation by signed number</li> </ul> | 00000         | \$                    |
| P3.2.30       | Setting<br>Coefficient of<br>Operation 1        | 00000~65535                                                                                                                                                                                                                                                                 | 00001         | \$                    |
| P3.2.31       | Input A of<br>Operation 2                       | Thousands, Hundreds, Tens and Ones:<br>express address of Input A of Operation 2<br>Ten Thousands: express input operation<br>model<br>0: Input is operation by unsigned number<br>1: Input is operation by signed number                                                   | 00000         | À                     |
| P3.2.32       | Input B of<br>Operation 2                       | Thousands, Hundreds, Tens and Ones:<br>express address of Input B of Operation 2<br>Ten Thousands: express input operation<br>model<br>0: Input is operation by unsigned number<br>1: Input is operation by signed number                                                   | 00000         | \$                    |
| P3.2.33       | Setting<br>Coefficient of<br>Operation 2        | 00000~65535                                                                                                                                                                                                                                                                 | 00001         | ☆                     |
| P3.2.34       | Input A of<br>Operation 3                       | Thousands, Hundreds, Tens and Ones:<br>express address of Input A of Operation 3<br>Ten Thousands: express input operation<br>model<br>0: Input is operation by unsigned number<br>1: Input is operation by signed number                                                   | 00000         | \$                    |
| P3.2.35       | Input B of<br>Operation 3                       | Thousands, Hundreds, Tens and Ones:<br>express address of Input B of Operation 3<br>Ten Thousands: express input operation<br>model<br>0: Input is operation by unsigned number<br>1: Input is operation by signed number                                                   | 00000         | Å                     |

| Function code | Function name                            | Setting scope                                                                                                                                                                                                          | Factory<br>value | Modification<br>limit |
|---------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|
| P3.2.36       | Setting<br>Coefficient of<br>Operation 3 | 00000~65535                                                                                                                                                                                                            | 00001            | ☆                     |
| P3.2.37       | Input A of<br>Operation 4                | Thousands, Hundreds, Tens and Ones: express<br>address of Input A of Operation 4<br>Ten Thousands: express input operation model<br>0: Input is operation by unsigned number<br>1: Input is operation by signed number | 00000            | *                     |
| P3.2.38       | Input B of<br>Operation 4                | Thousands, Hundreds, Tens and Ones: express<br>address of Input B of Operation 4<br>Ten Thousands: express input operation model<br>0: Input is operation by unsigned number<br>1: Input is operation by signed number | 00000            | \$                    |
| P3.2.39       | Setting<br>Coefficient of<br>Operation 4 | 00000~65535                                                                                                                                                                                                            | 00001            | ☆                     |

# 5.5 Group P4 - PID Control and Communication Control

| Function<br>code | Function name           | Setting scope                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Factory value | Modification<br>limit |
|------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------|
|                  |                         | Group P4.0: PID Control Group                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                       |
| P4.0.00          | PID Reference<br>Source | <ul> <li>0: Digital Reference (P4.0.01)</li> <li>1: Keyboard Potentiometer Reference</li> <li>2: External Terminal AVI Reference</li> <li>3: External Terminal ACI Reference</li> <li>4: PULS Impulse Reference (DI4)</li> <li>5: Communication Reference</li> <li>6: Multiplex Directive Terminal Reference</li> <li>7: Simple PLC Reference</li> <li>8: Operation Result 1</li> <li>9: Operation Result 2</li> <li>10: Operation Result 3</li> <li>11: Operation Result 4</li> </ul> | 00            | *                     |
| P4.0.01          | PID Value<br>Reference  | 000.0%~100.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 050.0         |                       |
| P4.0.02          | PID Feedback<br>Source  | 0: External Terminal AVI Reference<br>1: External Terminal AVI Reference<br>2: AVI-ACI<br>3: AVI+ACI<br>4: PULS Reference (DI4)<br>5: Communication Reference<br>6: MAX[AVI, ACI]<br>7: MIN[AVI, ACI]<br>8: Switch of Multiplex Directive<br>Terminal on the above conditions<br>9: Operation Result 1<br>10: Operation Result 2<br>11: Operation Result 3<br>12: Operation Result 4                                                                                                   | 00            | Å                     |
| P4.0.03          | PID Action<br>Direction | 0: Direct Action<br>1: Reverse Action                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0             | $\hat{\mathbf{x}}$    |

Modification Function Factory Function name Setting scope code limit value PID Reference P4.0.04 ☆ 00000~65535 01000 Feedback Range Proportional P4.0.05 000.0~100.0 020.0 ☆ Gains KP1 Integral Time TI1 P4.0.06 00.01s~10.00s 02.00 ☆ Derivative Time P4.0.07 ☆ 00.000s~10.000s 00.000 TD1 PID Deviation P4.0.08 0.000 ☆ 000.0%~100.0% Limit PID Feedback P4.0.09 00.00s~60.00s 00.00 ☆ Filtering time Proportional P4.0.10 000.0~100.0 020.00 ☆ Gains KP2 P4.0.11 Integral Time TI2 00.01s~10.00s 02.00 ☆ Derivative Time P4.0.12 00.000s~10.000s 00.000 ☆ TD2 0: No Switch PID Switch P4.0.13 1: Switch through Terminals 0 ☆ Conditions 2: Switch through Deviation PID Switch P4.0.14 000.0%~P4.0.15 020.0 ☆ Deviation 1 PID Switch P4.0.15 P4.0.14~100.0% 080.0 ☆ Deviation 2 P4.0.16 PID Initial Value 0.000 ☆ 000.0%~100.0% PID Initial Value P4.0.17 000.00~650.00s 000.00 ☆ Hold Time PID Feedback 000.0%: No Judgment on Feedback Loss P4.0.18 0.000 ☆ 000.1%~100.0% Loss Detection PID Feedback P4.0.19 Loss Detection 00.0s~20.0s 00.0 ☆ Time PID Stop 0 ☆ P4.0.20 0: No Operation 1: Operation Operation Group P4.1: Communication Group Ones: MODBUS baud rate 0:1200 1:2400 2:4800 3:9600 P4.1.00 Baud Rate 4:19200 03 ☆ 5:38400 6:57600 Tens: Invalid Hundreds: The upper computer protocol was enabled 0: No check (8-N-2) 1:Even parity check (8-E-1) Data Format 0 P4.1.01 ☆ 2:Odd parity check(8-0-1) 3:No check (8-N-1) Local Machine 000: Broadcast Address ☆ P4.1.02 001 Address  $001 \sim 249$ P4.1.03 Response Delay  $00 \sim 20 \text{ms}$ 02 ☆ Communication P4.1.04 00.0 (Invalid) 00.1s~60.0s ☆ 00.0 Timeout

Chapter 5 Tables of Function Parameters

| Function<br>code | Function name                          | Setting scope                                                                                                                                                                                  | Factory<br>value | Modification<br>limit |  |
|------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|--|
| P4.1.05          | Data Transmission Format               | Ones: MODBUS data format<br>0: ASCII mode (Reserved)<br>1: RTU mode<br>Tens: Invalid                                                                                                           | 01               | *                     |  |
| P4.1.06          | MODBUS communication data reply or not | 0: Reply 1: No reply                                                                                                                                                                           | 0                | ${\leftrightarrow}$   |  |
| P4.1.07          | Troubleshooting of communication error | 0: Bypassed<br>1: Shutdown<br>2: Communication fault                                                                                                                                           | 0                | Å                     |  |
|                  | Group P4.2: Expansion Group            |                                                                                                                                                                                                |                  |                       |  |
| P4.2.01          | PID reverses the cut-off frequency     | $0.00 \sim$ Highest frequency                                                                                                                                                                  | 0                | ${\leftrightarrow}$   |  |
| P4.2.02          | PID differential limiting              | 0.00%~100.00%                                                                                                                                                                                  | 000.10           | \$                    |  |
| P4.2.03          | PID gives the change time              | 0.00s~650.00s                                                                                                                                                                                  | 0                | \$                    |  |
| P4.2.04          | PID feedback filtering time            | 0.00s~60.00s                                                                                                                                                                                   | 0                | \$                    |  |
| P4.2.05          | PID output filtering time              | 0.00s~60.00s                                                                                                                                                                                   | 0                | \$                    |  |
| P4.2.06          | Two output deviations positive maximum | 0.00%~100.00%                                                                                                                                                                                  | 001.00           | ${\checkmark}$        |  |
| P4.2.07          | Two output deviations reverse maximum  | 0.00%~100.00%                                                                                                                                                                                  | 001.00           | ${\searrow}$          |  |
| P4.2.08          | PID integral attribute                 | Ones: Integral separation<br>0: invalid<br>1: effective<br>Tens: Whether to stop<br>integration after the output<br>reaches the limit value<br>0: Continue to integral<br>1: Stop the integral | 0                | ☆                     |  |

# 5.6 Group P5 - Keyboard Display

| Function<br>code | Function name                          | Setting scope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Factory value | Modification limit |
|------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------|
|                  |                                        | Group P5.0: Basic Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                    |
| P5.0.00          | Keyboard JOG Key<br>Function Reference | 0: Invalid<br>1: Forward Jogging<br>2: Reverse Jogging<br>3: Forward and Reverse Switch                                                                                                                                                                                                                                                                                                                                                                                                       | 1             | *                  |
| P5.0.01          | Keyboard STOP Key<br>Stop Function     | <ul><li>0: Only valid in Keyboard Operation</li><li>Mode</li><li>1: Valid for any Mode</li></ul>                                                                                                                                                                                                                                                                                                                                                                                              | 1             | ☆                  |
| P5.0.02          | LED Running Display<br>Parameter 1     | H.0001~H.FFFF<br>Bit00: Running Frequency (Hz)<br>Bit01: Reference frequency (Hz)<br>Bit02: Output Current (A)<br>Bit03: Output Voltage (V)<br>Bit04: Bus Voltage (V)<br>Bit05: Output Torque (%)<br>Bit06: Output Power (kW)<br>Bit07: Input Terminal State<br>Bit08: Output Terminal State<br>Bit09: AVI Voltage (V)<br>Bit10: ACI Voltage (V)<br>Bit11: Customized Display Value<br>Bit12: Actual Count Value<br>Bit13: Actual Length Value<br>Bit14: PID Reference<br>Bit15: PID Feedback | H.001F        | ¥                  |

| Function<br>code    | Function name                                                   | Setting scope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Factory value | Modification limit            |
|---------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------|
| P5.0.03             | LED Running Display<br>Parameter 2                              | H.0000~H.FFFF<br>Bit00: PULSE Impulse frequency<br>(0.01kHz)<br>Bit01: Feedback Speed (Hz)<br>Bit02: PLC Phase<br>Bit03: AVI Voltage before Correction<br>(V)<br>Bit04: ACI Voltage before Correction<br>(V)<br>Bit05: Line Speed<br>Bit06: Current Power-on Time (min)<br>Bit07: Current Running Time (min)<br>Bit08: Residual Running Time (min)<br>Bit08: Residual Running Time (min)<br>Bit09: Frequency of Frequency<br>Source A(Hz)<br>Bit10: Frequency of Frequency<br>Source B(Hz)<br>Bit11: Communication Set value<br>(Hz)<br>Bit12:PULSE Impulse Frequency<br>(Hz)<br>Bit13: Encoder Feedback Speed<br>(r/min)<br>Bit14: Actual Distance Value<br>Bit15: User Standby Monitoring<br>Value 1 | H.0000        | Å                             |
| P5.0.04             | Automatic Time<br>Switch of LED<br>Running Display<br>Parameter | 000.0: No Switch<br>000.1s~100.0s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 000.0         | $\overset{\Lambda}{\swarrow}$ |
| P5.0.05             | LED Stop Display<br>Parameter                                   | H.0001~H.FFFF<br>Bit00: Reference frequency (Hz)<br>Bit01: Bus Voltage (V)<br>Bit02: Input Terminal State<br>Bit03: Output Terminal State<br>Bit04: AVI Voltage (V)<br>Bit05: ACI Voltage (V)<br>Bit06: Actual Count Value<br>Bit07: Actual Length Value<br>Bit08: PLC Phase<br>Bit09: Customized Display Value<br>Bit10: PID Reference<br>Bit11: PID Feedback<br>Bit12:PULSE Impulse Frequency<br>(Hz)<br>Bit13: User Standby Monitoring<br>Value 1<br>Bit14: Reserved<br>Bit15: Reserved                                                                                                                                                                                                             | H.0033        | Å                             |
| P5.0.06~<br>P5.0.14 | Reserved                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                               |
| P5.0.15             | Customized Display<br>of Coefficient                            | 0.0001~6.5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0000        | $\overleftrightarrow$         |

| Function code | Function name                                       | Setting scope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Factory value | Modification<br>limit |
|---------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------|
| P5.0.16       | User-defined display<br>control word                | Ones: user-defined decimal<br>place displaying<br>0: zero decimal place<br>1: one decimal place<br>2: two decimal places<br>3: three decimal places<br>Tens: source of user-defined<br>display value<br>0: determined by hundreds place<br>of user-defined display control<br>word.<br>1: determined by set value of<br>P5.0.15, and 0.0000~0.0099<br>corresponds to P9.0.00~<br>P9.0.99 of P9 Group.<br>Hundreds: selection of<br>user-defined displaying<br>coefficient<br>0: user-defined displaying<br>coefficient is P5.0.15.<br>1: user-defined displaying<br>coefficient is calculation result 1<br>2: user-defined displaying<br>coefficient is calculation result 2<br>3: user-defined displaying<br>coefficient is calculation result 3<br>4: user-defined displaying<br>coefficient is calculation result 3 | 001           | ¥                     |
| P5.0.17       | Selection Display of<br>Function Parameter<br>Group | Ones:<br>0: Only display basic group<br>1: Display the menus at all levels<br>Tens<br>0: Don't display Group P7<br>1: Display Group P7<br>2: Reserved<br>Hundreds:<br>0: Don't display correction<br>parameter group<br>1: Display correction parameter<br>group<br>Thousands: Reserved<br>Ten Thousands: Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11            | *                     |
| P5.0.18       | Function Password<br>Protection                     | 0: Modifiable<br>1: Non-modifiable<br>2: Allowable Modification to GP<br>Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0             | \$                    |

| Function<br>code | Function name                       | Setting scope                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Factory<br>value | Modification<br>limit |
|------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|
| P5.0.19          | Parameter<br>Initialization         | <ul> <li>00: No Operation</li> <li>01: Clearance of Record Information</li> <li>09: Reset to Factory Parameter,</li> <li>excluding motor parameter, correction</li> <li>group, password group</li> <li>19: Reset to Factory Parameter,</li> <li>excluding motor parameter, password</li> <li>group</li> <li>30: Users Current Parameter Backup</li> <li>60: Reset to User Backup Parameters</li> <li>100~999: Reset to User Factory</li> <li>Parameters</li> </ul> | 000              | *                     |
| P5.0.20          | User Password                       | 00000~65535                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00000            | $\overleftrightarrow$ |
|                  |                                     | roup P5.1: Expansion Group                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                       |
| P5.1.00          | Accumulative Running<br>Time        | 00000h~65000h                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | ●                     |
| P5.1.01          | Accumulative Power<br>On Time       | 00000h~65000h                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | •                     |
| P5.1.02          | Accumulative Power<br>Consumption   | 00000 kW•h ~65000 kW•h                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | •                     |
| P5.1.03          | Module Temperature                  | 000°C~100°C                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | $\bullet$             |
| P5.1.04          | Hardware Version No.                | 180.00                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                       |
| P5.1.05          | Performance software version number | 000.00~655.35                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | •                     |
| P5.1.06          | Program Non-standard<br>Label       | 0000~9999                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | •                     |
| P5.1.07          | Functional software version number  | 000.00~655.35                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | •                     |

# 5.7 Group P6 - Fault Display and Protection

| Function<br>code | Function name        | Setting scope                         | Factory value | Modification<br>limit |
|------------------|----------------------|---------------------------------------|---------------|-----------------------|
|                  | Gro                  | oup P6.0: Fault Display Group         |               |                       |
| P6.0.00          | Fault Record 1 (Last | 0: No Fault                           |               |                       |
| P6.0.00          | Time)                | 1: Constant Over-current              |               | •                     |
| P6.0.01          | Fault Record 2       | 2: Accelerated Over-current           |               |                       |
|                  |                      | 3: Decelerated Overcurrent            |               |                       |
|                  |                      | 4: Constant Overvoltage               |               |                       |
|                  |                      | 5: Accelerated Overvoltage            |               |                       |
|                  |                      | 6: Decelerated Overvoltage            |               |                       |
|                  |                      | 7: Module Fault                       |               |                       |
|                  |                      | 8: Under-voltage                      |               |                       |
| D6 0 02          | Fault Record 3       | 9: Frequency inverter Overload        |               |                       |
| P6.0.02          | Fault Record 3       | 10: Motor Overload                    |               | •                     |
|                  |                      | 11: Input Default Phase               |               |                       |
|                  |                      | 12: Output Default Phase              |               |                       |
|                  |                      | 13: External Fault                    |               |                       |
|                  |                      | 14: Communication Abnormity           |               |                       |
|                  |                      | 15: Frequency inverter Overheat       |               |                       |
|                  |                      | 16: Frequency inverter Hardware Fault |               |                       |

| Function | Function name                            | Setting scope                      | Factory | Modification |
|----------|------------------------------------------|------------------------------------|---------|--------------|
| code     |                                          |                                    | value   | limit        |
|          |                                          | 17: Motor-to-ground Short Circuit  |         |              |
|          |                                          | 18: Motor Identification Error     |         |              |
|          |                                          | 19: Motor Off-load                 |         |              |
|          |                                          | 20: PID Feedback Loss              |         |              |
|          |                                          | 21: User Customized Fault 1        |         |              |
|          |                                          | 22: User Customized Fault 2        |         |              |
|          |                                          | 23: Power-on Time Arrival          |         |              |
|          |                                          | 24: Running Time Arrival           |         |              |
|          |                                          | 25: Reserved                       |         |              |
|          |                                          | 26: Parameter Read-Write Abnormity |         |              |
|          |                                          | 27: Motor Overheat                 |         |              |
|          |                                          | 28: Larger Speed Deviation         |         |              |
|          |                                          | 29: Motor Over-speed               |         |              |
|          |                                          | 30: Initial Position Error         |         |              |
|          |                                          | 31: Current Detection Fault        |         |              |
|          |                                          | 32: Contactor                      |         |              |
|          |                                          | 33: Abnormity of Current Detection |         |              |
|          |                                          | 34: Fast Current-limiting Timeout  |         |              |
|          |                                          | 35: Motor Switch at Running        |         |              |
|          |                                          | 36~39: Reserved                    |         |              |
|          |                                          | 40: Buffer Resistance Fault        |         |              |
| P6.0.03  | Fault Frequency 1                        |                                    |         |              |
| P6.0.04  | Fault Current 1                          |                                    |         | •            |
|          | Bus Voltage 1 when at                    |                                    |         | -            |
| P6.0.05  | Fault                                    |                                    |         | •            |
| P6.0.06  | Input Terminal State 1                   |                                    |         | •            |
|          | when at fault                            |                                    |         |              |
| P6.0.07  | Output Terminal State<br>1 when at fault |                                    |         | •            |
|          | Frequency inverter                       |                                    |         |              |
| P6.0.08  | State 1 when at fault                    |                                    |         | •            |
| P6.0.09  | Power-on Time 1                          |                                    |         |              |
| P0.0.09  | when at fault                            |                                    |         | •            |
| P6.0.10  | Running Time 1 when                      |                                    |         | •            |
|          | at fault                                 |                                    |         |              |
| P6.0.11  | Fault Frequency 2                        |                                    |         |              |
| P6.0.12  | Fault Current 2                          |                                    |         |              |
| P6.0.13  | Bus Voltage 2 when at Fault              |                                    |         | •            |
|          | Input Terminal State 2                   |                                    |         |              |
| P6.0.14  | when at fault                            |                                    |         |              |
| P6.0.15  | Output Terminal State                    |                                    |         |              |
| FU.U.13  | 2 when at fault                          |                                    |         |              |
| P6.0.16  | Frequency inverter                       |                                    |         | •            |
|          | State 2 when at fault<br>Power-on Time 2 |                                    |         |              |
| P6.0.17  | when at fault                            |                                    |         | $\bullet$    |
| P6.0.18  | Running Time 2 when                      |                                    |         |              |
|          | at fault                                 |                                    |         | -            |
| P6.0.19  | Fault Frequency 3                        |                                    |         |              |
| P6.0.20  | Fault Current 3                          |                                    |         | $\bullet$    |

| Function<br>code | Function name                                     | Setting scope                                                                                                                                                                                                                     | Factory<br>value | Modificatio           |
|------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|
| P6.0.21          | Bus Voltage 3 when at<br>Fault                    |                                                                                                                                                                                                                                   |                  | •                     |
| P6.0.22          | Input Terminal State 3<br>when at fault           |                                                                                                                                                                                                                                   |                  | •                     |
| P6.0.23          | Output Terminal State<br>3 when at fault          |                                                                                                                                                                                                                                   |                  | •                     |
| P6.0.24          | Frequency inverter<br>State 3 when at fault       |                                                                                                                                                                                                                                   |                  | •                     |
| P6.0.25          | Power-on Time 3<br>when at fault                  |                                                                                                                                                                                                                                   |                  | •                     |
| P6.0.26          | Running Time 3 when at fault                      |                                                                                                                                                                                                                                   |                  | •                     |
|                  | Gro                                               | up 6.1: Protection Control Group                                                                                                                                                                                                  |                  |                       |
| P6.1.00          | Input Default Phase<br>Protection                 | 0: Prohibited<br>1: Allowed                                                                                                                                                                                                       | 1                | \$                    |
| P6.1.01          | Output Default Phase<br>Protection                | 0: Prohibited<br>1: Allowed                                                                                                                                                                                                       | 1                | ☆                     |
| P6.1.02          | Over-voltage Stall<br>Protection Sensitivity      | 0~100                                                                                                                                                                                                                             | 5                | ☆                     |
| P6.1.03          | Over-voltage Stall<br>Protection Voltage<br>Point | 115%~150%                                                                                                                                                                                                                         | 130              | \$                    |
| P6.1.04          | Over-current Stall<br>Protection Sensitivity      | 0~100                                                                                                                                                                                                                             | 020              | ☆                     |
| P6.1.05          | Over-current Stall<br>Protection current          | 100%~200%                                                                                                                                                                                                                         | 150              | ☆                     |
| P6.1.06          | Fault Auto Reset<br>Number                        | 0~20                                                                                                                                                                                                                              | 00               | $\overleftrightarrow$ |
| P6.1.07          | Waiting Interval Time<br>of Fault Auto Reset      | 0.1s~100.0s                                                                                                                                                                                                                       | 001.0            | ☆                     |
| P6.1.08          | Fault Protective Action<br>Selection 1            | 0: Free Stop<br>1: Stop by its Mode<br>2: Continuous Running<br>Ones: Motor Overload<br>Tens: Input Default Phase<br>Hundreds: Output Default Phase<br>Thousands: External Default<br>Ten Thousands: Communication<br>Abnormality | 00000            | ☆                     |
| P6.1.09          | Fault Protective Action<br>Selection 2            | 0: Free Stop<br>1: Stop by its Mode<br>2: Continuous Running                                                                                                                                                                      | 00000            | *                     |

Hundreds: User Customized Fault 1 Thousands: User Customized Fault 2 Ten Thousands: Power-on Time Arrival

Chapter 5 Tables of Function Parameters

| Function<br>code | Function name                                                     | Setting scope                                                                                                                                                                                                                                                                                                                                                                         | Factory<br>value | Modification<br>limit |
|------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|
| P6.1.10          | Fault Protective Action<br>Selection 3                            | Ones: Running Time Arrival<br>0: Free Stop<br>1: Stop by its Mode<br>2: Continuous Running<br>Tens: Reserved<br>Hundreds: Parameter Read-Write<br>Abnormity<br>0: Free Stop<br>1: Stop by its Mode<br>Thousands: Motor Overhear<br>0: Free Stop<br>1: Stop by its Mode<br>2: Continuous Running<br>Ten Thousands: Fault of 24V Power<br>Supply<br>0: Free Stop<br>1: Stop by its Mode | 00000            | X                     |
| P6.1.11          | Fault Protective Action<br>Selection 4                            | 0: Free Stop<br>1: Stop by its Mode<br>2: Continuous Running                                                                                                                                                                                                                                                                                                                          | 00000            | \$                    |
| P6.1.12          | Continuous Running<br>Frequency Selection<br>when at Fault        | <ul> <li>0: Running at Current Frequency</li> <li>1: Running at Reference frequency</li> <li>2: Running at Upper Frequency</li> <li>3: Running at Lower Frequency</li> <li>4: Running at Back Frequency for<br/>Abnormality</li> </ul>                                                                                                                                                | 0                | Å                     |
| P6.1.13          | Backup Frequency for<br>Abnormality                               | 000.0%~100.0%                                                                                                                                                                                                                                                                                                                                                                         | 100.0            |                       |
| P6.1.14          | Action Selection for<br>Momentary<br>Interruption                 | 0: Invalid<br>1: Deceleration<br>2: Stop by Deceleration                                                                                                                                                                                                                                                                                                                              | 0                | Å                     |
| P6.1.15          | Judgment Time of<br>Momentary<br>Interruption Voltage<br>Recovery | 000.00s~100.00s                                                                                                                                                                                                                                                                                                                                                                       | 000.50           | ☆                     |
| P6.1.16          | Voltage Judgment for<br>Momentary<br>Interruption Action          | 60.0%~100.0% (Standard Bus<br>Voltage)                                                                                                                                                                                                                                                                                                                                                | 080.0            |                       |
| P6.1.17          | Voltage Judgment for<br>Suspension of<br>Momentary Action         | 80.0%~100.0% (Standard Bus<br>Voltage)                                                                                                                                                                                                                                                                                                                                                | 090.0            |                       |

| Chapter 5 Tables of Function Parameters |
|-----------------------------------------|
|-----------------------------------------|

| Function<br>code    | Function name                                                               | Setting scope                                         | Factory<br>value | Modification<br>limit       |
|---------------------|-----------------------------------------------------------------------------|-------------------------------------------------------|------------------|-----------------------------|
| P6.1.18             | Off-load Protection<br>Selection                                            | 0: Invalid 1: Valid                                   | 0                | \$                          |
| P6.1.19             | Off-load Detection Level                                                    | 000.0%~100.0%                                         | 010.0            | $\stackrel{\wedge}{\simeq}$ |
| P6.1.20             | Off-load Detection Time                                                     | 00.0s~60.0s                                           | 01.0             | ${\leftrightarrow}$         |
| P6.1.21~<br>P6.1.24 | Reserved                                                                    |                                                       |                  |                             |
| P6.1.25             | Fault Output Terminal<br>Action Selection during<br>Fault Auto Reset Period | 0: No Action<br>1: Action                             | 0                | \$                          |
| P6.1.26             | Input Default Phase<br>Protection Sensitivity                               | 01~10 (The smaller it is, the more sensitivity it is) | 05               | \$                          |

5.8 Group P7 - User Function Customization

| Function           | Function name    | Setting scope                      | Factory          | Modification          |
|--------------------|------------------|------------------------------------|------------------|-----------------------|
| code               |                  | Croup D7.0: Dagie Croup            | value            | limit                 |
| D7 0 00            | User Function 0  | Group P7.0: Basic Group<br>U0.0.01 | U0.001           |                       |
| P7.0.00<br>P7.0.01 | User Function 1  |                                    | U0.001<br>U0.002 | <br>☆                 |
|                    |                  | U0.0.00~UX.X.XX(exclude P7, P8)    |                  |                       |
| P7.0.02            | User Function 2  | U0.0.00~UX.X.XX(exclude P7, P8)    | U0.003           | $\sim$                |
| P7.0.03            | User Function 3  | U0.0.00~UX.X.XX(exclude P7, P8)    | U0.007           | ×                     |
| P7.0.04            | User Function 4  | U0.0.00~UX.X.XX(exclude P7, P8)    | U0.008           | ×                     |
| P7.0.05            | User Function 5  | U0.0.00~UX.X.XX(exclude P7, P8)    | U0.017           | × X                   |
| P7.0.06            | User Function 6  | U0.0.00~UX.X.XX(exclude P7, P8)    | U0.018           | \$                    |
| P7.0.07            | User Function 7  | U0.0.00~UX.X.XX(exclude P7, P8)    | U0.000           | \$                    |
| P7.0.08            | User Function 8  | U0.0.00~UX.X.XX(exclude P7, P8)    | U0.000           | \$                    |
| P7.0.09            | User Function 9  | U0.0.00~UX.X.XX(exclude P7, P8)    | U0.000           | $\overleftrightarrow$ |
| P7.0.10            | User Function 10 | U0.0.00~UX.X.XX(exclude P7, P8)    | U0.000           | 27                    |
| P7.0.11            | User Function 11 | U0.0.00~UX.X.XX(exclude P7, P8)    | U0.000           | \$                    |
| P7.0.12            | User Function 12 | U0.0.00~UX.X.XX(exclude P7, P8)    | U0.000           | \$ <del>```</del>     |
| P7.0.13            | User Function 13 | U0.0.00~UX.X.XX(exclude P7, P8)    | U0.000           | \$                    |
| P7.0.14            | User Function 14 | U0.0.00~UX.X.XX(exclude P7, P8)    | U0.000           | \$                    |
| P7.0.15            | User Function 15 | U0.0.00~UX.X.XX(exclude P7, P8)    | U0.000           | \$                    |
| P7.0.16            | User Function 16 | U0.0.00~UX.X.XX(exclude P7, P8)    | U0.000           | \$                    |
| P7.0.17            | User Function 17 | U0.0.00~UX.X.XX(exclude P7, P8)    | U0.000           | \$                    |
| P7.0.18            | User Function 18 | U0.0.00~UX.X.XX(exclude P7, P8)    | U0.000           | \$                    |
| P7.0.19            | User Function 19 | U0.0.00~UX.X.XX(exclude P7, P8)    | U0.000           | \$                    |
| P7.0.20            | User Function 20 | U0.0.00~UX.X.XX(exclude P7, P8)    | U0.000           | \$                    |
| P7.0.21            | User Function 21 | U0.0.00~UX.X.XX(exclude P7, P8)    | U0.000           | \$                    |
| P7.0.22            | User Function 22 | U0.0.00~UX.X.XX(exclude P7, P8)    | U0.000           | \$                    |
| P7.0.23            | User Function 23 | U0.0.00~UX.X.XX(exclude P7, P8)    | U0.000           | ☆<br>\                |
| P7.0.24            | User Function 24 | U0.0.00~UX.X.XX(exclude P7, P8)    | U0.000           | ☆                     |
| P7.0.25            | User Function 25 | U0.0.00~UX.X.XX(exclude P7, P8)    | U0.000           | ☆                     |
| P7.0.26            | User Function 26 | U0.0.00~UX.X.XX(exclude P7, P8)    | U0.000           | x<br>☆                |
| P7.0.27            | User Function 27 | U0.0.00~UX.X.XX(exclude P7, P8)    | U0.000           | ें<br>दे              |
| P7.0.28            | User Function 28 | U0.0.00~UX.X.XX(exclude P7, P8)    | U0.000           | े<br>दे               |
| P7.0.29            | User Function 29 | U0.0.00~UX.X.XX(exclude P7, P8)    | U0.000           |                       |

| Function code                           | Function name                                                        | Setting scope                    | Factory value | Modification<br>limit       |  |
|-----------------------------------------|----------------------------------------------------------------------|----------------------------------|---------------|-----------------------------|--|
| Group P8.0: Manufacturer Function Group |                                                                      |                                  |               |                             |  |
| P8.0.00                                 | Manufacturer<br>Password                                             | 00000~65535                      | 00000         | $\overleftrightarrow$       |  |
|                                         | Group                                                                | P8.1: Parameter Correction Group |               |                             |  |
| P8.1.00                                 | Voltage Input of<br>Potentiometer<br>Correction Point 1              | 00.00V~P8.1.02                   | 00.20         | ${\leftrightarrow}$         |  |
| P8.1.01                                 | Corresponding<br>reference of<br>Potentiometer<br>Correction Point 1 | -100.0%~100.0%                   | 000.0         | ${\leftarrow}$              |  |
| P8.1.02                                 | Voltage Input of<br>Potentiometer<br>Correction Point 2              | P8.1.00~10.00V                   | 09.50         | ${\leftarrow}$              |  |
| P8.1.03                                 | Corresponding<br>reference of<br>Potentiometer<br>Correction Point 2 | -10.0%~100.0%                    | 100.0         | ☆                           |  |
| P8.1.04                                 | Filtering time of potentiometer                                      | 00.00s~10.00s                    | 00.10         | ☆                           |  |
| P8.1.05                                 | AVI actual voltage 1                                                 | 0.500V~4.000V                    | 2.000         | $\stackrel{\wedge}{\simeq}$ |  |
| P8.1.06                                 | AVI display voltage 1                                                | 0.500V~4.000V                    | 2.000         | \$                          |  |
| P8.1.07                                 | AVI actual voltage 2                                                 | 6.000V~9.999V                    | 8.000         | $\overleftrightarrow$       |  |
| P8.1.08                                 | AVI display voltage 2                                                | 6.000V~9.999V                    | 8.000         |                             |  |
| P8.1.09                                 | ACI actual voltage 1                                                 | 0.500V~4.000V                    | 2.000         |                             |  |
| P8.1.10                                 | ACI display voltage 1                                                | 0.500V~4.000V                    | 2.000         |                             |  |
| P8.1.11                                 | ACI actual voltage 2                                                 | 6.000V~9.999V                    | 8.000         |                             |  |
| P8.1.12                                 | ACI display voltage 2                                                | 6.000V~9.999V                    | 8.000         | $\stackrel{\wedge}{\simeq}$ |  |
| P8.1.13                                 | FM1 target voltage 1                                                 | 0.500V~4.000V                    | 2.000         | \$                          |  |
| P8.1.14                                 | FM1 actual voltage 1                                                 | 0.500V~4.000V                    | 2.000         | \$                          |  |
| P8.1.15                                 | FM1 target voltage 2                                                 | 6.000V~9.999V                    | 8.000         |                             |  |
| P8.1.16                                 | FM1 actual voltage 2                                                 | 6.000V~9.999V                    | 8.000         |                             |  |

# 5.9 Group P8 - Manufacturer Function

# 5.10 Group P9 - Monitoring Parameter

| Function<br>code | Function name          | Description                                                                                                     | Unit   |
|------------------|------------------------|-----------------------------------------------------------------------------------------------------------------|--------|
| P9.0.00          | Running Frequency      | Output frequency when the frequency inverter runs                                                               | 0.01Hz |
| P9.0.01          | Reference frequency    | Reference frequency of the frequency inverter                                                                   | 0.01Hz |
| P9.0.02          | Output Current         | Output current when the frequency inverter runs                                                                 | 0.01A  |
| P9.0.03          | Output Voltage         | Output voltage when the frequency inverter runs                                                                 | 1V     |
| P9.0.04          | Bus Voltage            | Voltage on DC Bus of the frequency inverter                                                                     | 0.1V   |
| P9.0.05          | Output Torque          | When the frequency inverter runs, the output torque is<br>the percentage of rated torque of the motor           | 0.1%   |
| P9.0.06          | Output Power           | Output frequency when the frequency inverter runs                                                               | 0.1kW  |
| P9.0.07          | Input Terminal Status  | Check whether the input terminal has signal input                                                               |        |
| P9.0.08          | Output Terminal Status | Check whether the output terminal has signal output                                                             |        |
| P9.0.09          | AVI Voltage            | Check the voltage between AVI and COM                                                                           | 0.01V  |
| P9.0.10          | ACI Voltage            | Check the voltage between ACI and COM                                                                           | 0.01V  |
| P9.0.11          | Custom Display Value   | Display coefficient P5.0.15 and the value after<br>conversion of Decimal Point P5.0.16 through<br>customization |        |
| P9.0.12          | Actual Counting Value  | View actual counting value of the frequency inverter for counting function                                      | 1      |

| Function<br>code    | Function name                      | Description                                                                                               | Unit    |
|---------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------|---------|
| P9.0.13             | Actual Length Value                | View actual counting value of the frequency inverter for fixed-length function                            | 1m      |
| P9.0.14             | PID Reference                      | Product of PID reference value and PID reference<br>feedback quantity                                     |         |
| P9.0.15             | PID Feedback                       | Product of PID feedback value and PID reference feedback rang                                             |         |
| P9.0.16             | PULS Impulse<br>Frequency          | View the frequency of PULSE Impulse Input                                                                 | 0.01kHz |
| P9.0.17             | Feedback Speed                     | Actual output frequency when the frequency inverter runs                                                  | 0.1Hz   |
| P9.0.18             | PLC Phase                          | Display which stage the Simple PLC runs at                                                                | 1       |
| P9.0.19             | Voltage before AVI<br>Correction   | Voltage between AVI and COM before AVI correction                                                         | 0.001V  |
| P9.0.20             | Voltage before ACI<br>Correction   | Voltage between ACI and COM before ACI correction                                                         | 0.001V  |
| P9.0.21             | Line Speed                         | The sampling line speed of DI4 impulse is equal to the acquisition of impulse count per minute/ per meter | 1m/min  |
| P9.0.22             | Current Power-on Time              | Length of current power-on time                                                                           | 1min    |
| P9.0.23             | Current Running Time               | Length of current running time                                                                            | 0.1min  |
| P9.0.24             | Residual Running<br>Time           | Residual running time at Timing Function of P3.1.00                                                       | 0.1min  |
| P9.0.25             | Frequency of<br>Frequency Source A | View the frequency given by Frequency A                                                                   | 0.01Hz  |
| P9.0.26             | Frequency of<br>Frequency Source B | Check the frequency given by Frequency B                                                                  | 0.01Hz  |
| P9.0.27             | Communication Set value            | The value set by corresponding communication address<br>A001 is the percentage of the highest frequency   | %       |
| P9.0.28             | PULSE Impulse<br>frequency         | Check the frequency of PULSE Impulse Input                                                                | 1Hz     |
| P9.0.29             | Reserved                           |                                                                                                           |         |
| P9.0.30             | Actual Distance Value              | Check actual distance value of the distance value of the frequency inverter                               |         |
| P9.0.31~            | Reserved                           |                                                                                                           |         |
| P9.0.45             |                                    |                                                                                                           |         |
| P9.0.46             | Operation Result 1                 | Check the value of operation result 1                                                                     |         |
| P9.0.47             | Operation Result 2                 | Check the value of operation result 2                                                                     |         |
| P9.0.48             | Operation Result 3                 | Check the value of operation result 3                                                                     |         |
| P9.0.49             | Operation Result 4                 | Check the value of operation result 4                                                                     |         |
| P9.0.50~<br>P9.0.54 | User Standby<br>Monitoring Value   | Check the value of user special function                                                                  |         |

# 6.1 Group 0 - Basic Function

#### P0.0 Group - Basic Group

| Function code | Function name                 | Setting scope                                          | Factory value |
|---------------|-------------------------------|--------------------------------------------------------|---------------|
| P0.0.00       | Type of Frequency<br>inverter | 1:G Type (constant torque<br>load type)<br>2: Reserved | Machine type  |

This function code is only for the users to check the factory type of the frequency inverter and is generally not allowed to be modified by the users. If modification is required, the function code P5.0.18 must be first changed to 2.

#### 1: G type Applicable for constant torque load

| Function code | Function name | Setting scope                   | Factory value |
|---------------|---------------|---------------------------------|---------------|
|               |               | 0: Primary mode (prefix is "P") |               |
| P0.0.01       | Display Mode  | 1: User mode (prefix is "U")    | 0             |
|               |               | 2: Check mode (prefix is 'C')   |               |

This function code is used to confirm which display mode of frequency inverter is selected, When P5.0.18 is equal to 2, it can be modified.

# 0: Primary mode (prefix is "P")

The function code parameter display of frequency inverter depends on the function code P5.0.17 (refer to the description of function code P5.0.17 for details).

# 1: User mode (prefix is "U")

Only the user function customization parameter is displayed, the function code parameter display of frequency inverter depends on the function code of P7.0 group (refer to the description of P7.0 group for details). The prefix of function code is 'U'.

#### 2: Check mode (prefix is 'C')

Only the modified parameter is displayed (when the parameter value of function mode is different from the factory value, it'll be regarded as the modified one), under check mode, the prefix of function code is 'C'.

Note: No matter whether the prefix of function code is 'P' or 'U' or 'C', the meaning of relative parameter is same. It's only for classification of display mode. For instance, U0.0.01 in the User Mode is P0.0.01 in the Primary Mode.

| Function code | Function name | Setting scope | Factory value |
|---------------|---------------|---------------|---------------|
| P0.0.02       | Control Mode  | 0:V/F Control | 0             |

0: V/F control

Applicable to the condition that load requirement is low or one set of frequency inverter drives several motors.

| Function code | Function name       | Setting scope       | Factory value |
|---------------|---------------------|---------------------|---------------|
|               |                     | 0: Keyboard Control |               |
| P0.0.03       | Option of operation | 1: Terminal Control | 0             |
| P0.0.05       | control mode        | 2: Communication    | 0             |
|               |                     | Control             |               |

# 0: Keyboard control

Key RUN, STOP and JOG on operating panel control start, stop and FWD& REV switch of the frequency inverter

## 1: Terminal input

Use the digital input terminal to control FWD, REV and stop of the frequency inverter.

## 2: Communication control

Use the principal computer to control 1 FWD, REV, stop, jog and reset (Refer to Chapter VIII for more details)

Refer to 7.1.1 for 3 detailed control modes.

| Function code   | Function name           | Setting scope                               | Factory value |
|-----------------|-------------------------|---------------------------------------------|---------------|
|                 |                         | 0: Keyboard Reference (No Power-off Memory) |               |
|                 |                         | 1: Keyboard Reference (Power-off Memory)    |               |
|                 |                         | 2: Keyboard Potentiometer Reference         |               |
|                 |                         | 3: External Terminal AVI Reference          |               |
|                 |                         | 4:External Terminal ACI Reference           |               |
|                 |                         | 5:PULS Impulse Reference (DI4)              | 0             |
| <b>DO O O</b> 4 | Option of A Frequency   | 6: Multiplex Directive Reference            |               |
| P0.0.04         | Source                  | 7:Simple PLC Reference                      |               |
|                 | 8:PID Control Reference |                                             |               |
|                 |                         | 9:Communication Reference                   |               |
|                 |                         | 10:Operation Result 1                       |               |
|                 |                         | 11:Operation Result 2                       |               |
|                 |                         | 12:Operation Result 3                       |               |
|                 |                         | 13:Operation Result 4                       |               |

0: Keyboard Reference (No Power-off Memory)

The initial value of the reference frequency is the value set by Function Code P0.0.05, and it can be changed through Key  $\blacktriangle$   $\And$  on the keyboard or Terminal UP/DOWN, please set the parameter P0.1.05 to confirm whether the stop memory is modified or not (keyboard reference frequency stop memory selection). After the frequency inverter powers on again after power off, the reference frequency is set to value set by P0.0.05.

1: Keyboard Reference (Power-off Memory)

The initial value of the reference frequency is the value set by Function Code P0.0.05, and it can be changed Page 60

through Key  $\blacktriangle$  &  $\checkmark$  on the keyboard or Terminal UP/DOWN, please set the parameter P0.1.05 to confirm whether the stop memory is modified or not (keyboard reference frequency stop memory selection). After the frequency inverter powers on again after power off, the reference frequency is the frequency at the time of power off, and it can be saved through Key  $\bigstar$  &  $\checkmark$  on the keyboard or Terminal UP/DOWN.

#### 2: Keyboard Potentiometer Reference

The reference frequency is given by the potentiometer on operation panel. The impact of zero-offset or voltage attenuation caused by overlong keyboard lines can be adjusted through Function Code P8.1.00~P8.1.04.

#### 3: External Terminal AVI Reference

#### 4: External Terminal ACI Reference

The reference frequency is given by the analog input terminal. D200 Series Frequency inverter provides 2-way analog input terminal (AVI, ACI). AVI is used for voltage ( $0V \sim 10V$ ) input, ACI is used for current ( $0/4mA \sim 20mA$ ) input. As for corresponding relation curve between the input of AVI and ACI and the reference frequency, the users can freely choose from four kinds of the relation curves through function code P2.1.02, in which Curve 1 and Curve 2 are linear relationship able to be set through Function Code P2.0.13~P2.0.22, and Curve 3 and Curve 4 are broken line relationship with two inflection points able to be set through Function Code P2.1.04~P2.1.19. The deviation between actual voltage and sampling voltage of the analog input terminal can be adjusted through Function Code P8.1.05~P8.1.12.

#### 5: PULS Impulse Reference (DI4)

The frequency reference is given by high-speed impulse frequency of digital input terminal DI4 (the terminal function is not defined). The corresponding relationship between high-speed impulse frequency and torque upper limit value can be set through Function Code P2.0.23~P2.0.26, that is, line relationship.

#### 6: Multiplex Directive Terminal Reference

The reference frequency is given by different composite state of Multiplex Directive Terminal. D200 Series Frequency inverter is able to set four Multiplex Directive Terminals (Terminal Function 9~12, refer to the Description for Multiplex Directive Terminal Function of P2.0.00~P2.0.03 for more details)

#### 7: Simple PLC Reference

The reference frequency is given by Simple PLC Function, the running frequency of the frequency inverter can be switched among  $1\sim16$  arbitrary frequency directives, the sources, hold time and acceleration & deceleration time of each frequency directive can be set through Function Code  $3.0.03\simP3.0.50$ .

#### 8: PID Control Reference

The reference frequency is given by the frequency calculated from PID Control. When setting the frequency calculated from PID Control, it is required to setting related parameters of "PID Control Group" (P4.0.00~P4.0.20).

#### 9: Communication Reference

The reference frequency is given by the principal computer through communication mode (Refer to Chapter VIII for more details)

- 10: Operation Result 1
- 11: Operation Result 2
- 12: Operation Result 3
- 13: Operation Result 4

The reference frequency is determined by the operation results after setting calculation of the internal operation module. Refer to the Description of Function Codes P3.2.26~P3.2.39 for more details of the operation module. The operation results can be viewed through Function Codes P9.0.46~P9.0.49.

| Function code   | Function name                | Setting scope   | Factory value |
|-----------------|------------------------------|-----------------|---------------|
| P0.0.05 Keyboar | Keyboard Frequency Reference | 000.00~ Highest | 050.00        |
|                 | Reyouard Frequency Reference | Frequency       | 050.00        |

When the Function Code P0.0.04 or P0.1.01 is set to 0 or 1, the initial value of the reference frequency is given by this function code.

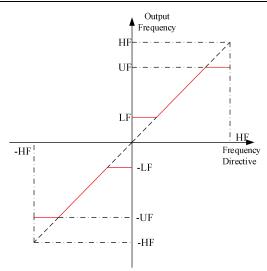
| Function code   | Function name     | Setting scope                         | Factory value |
|-----------------|-------------------|---------------------------------------|---------------|
|                 |                   | 0: Default Direction                  |               |
| <b>D</b> O O O( | Denning Dimestica | 1: Negation of Direction              | 0             |
| P0.0.06         | Running Direction | 2: Determined by multi-function input | 0             |
|                 | terminal          |                                       |               |

The modification on this function code can realize the purpose of changing the motor steering without changing the connection of the motor and its role is equivalent to adjust any two lines of Motor U, V and W to realize the conversion of the steering direction of the motors. This function code is valid in any running control mode. When P0.0.06 is set to 2, the running direction is determined by multi-function input terminal. The function code of multi-function input terminal is 37, and the terminal signal is valid and adopts reversed direction.

Note: Reset to factory parameters, the running direction of the motor can restore to original state. It should be used with caution for occasions that forbid from changing the motor steering after completing the debugging of the system.

| Function code | Function name     | Setting scope     | Factory value |
|---------------|-------------------|-------------------|---------------|
| P0.0.07       | Highest Frequency | 050.00Hz~320.00Hz | 050.00        |

The highest frequency refers to the maximum frequency that the frequency inverter allows to output.


When the analog input, PULS Impulse Input, multiplex directive input and simple PLC in D200 Series Frequency inverter are adopted as frequency source, each percentage is set based on the value given by corresponding function code.

| Note: the modification to this set value can change the data which takes the set value of this function code |  |
|--------------------------------------------------------------------------------------------------------------|--|
| as calibration.                                                                                              |  |

| Function code | Function name   | Setting scope                          | Factory value |
|---------------|-----------------|----------------------------------------|---------------|
| P0.0.08       | Upper frequency | Lower frequency ~<br>Highest frequency | 050.00        |
| P0.0.09       | Lower frequency | 000.00~ Upper frequency                | 000.00        |

The upper limit frequency is the Highest Frequency allowed to run set by the users. At P0.1.03=0, the set value of Function Code P0.0.08 determines the Highest Frequency that the frequency inverter allows to run. The lower limit frequency is the minimum frequency allowed to run set by the users.

The relationship among Highest Frequency, Upper Limit Frequency and Lower Limit Frequency are shown in the figure below:



HF: Highest Frequency UF: Upper Frequency LF: Lower Frequency

| Function code | Function name             | Setting scope                      | Factory value |
|---------------|---------------------------|------------------------------------|---------------|
|               |                           | 0:Running at lower limit frequency |               |
| P0.0.10       | Lower frequency operation | 1: Stop                            | 0             |
| P0.0.10       | mode                      | 2: Zero-speed Running              | 0             |
|               |                           | 3: Standby                         |               |

0: Run at lower limit frequency

When the reference frequency is less than the lower limit frequency (value set by P0.0.09), the frequency inverter runs at lower limit frequency

#### 1: Stop

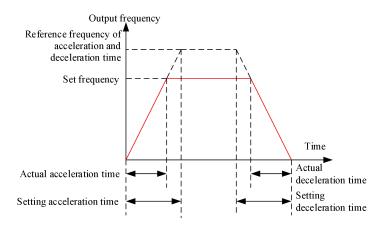
When the setting frequency is below the lower limit frequency, the frequency inverter will stop.

#### 2: Zero-speed run

When the setting frequency is below lower limit frequency, the frequency inverter will run at 0Hz.

#### 3: Standby

When the given frequency is lower than the lower limit frequency, the frequency converter is in standby state, and when the frequency is higher than the lower limit frequency, the frequency converter runs.


# Note: In case of running at 0Hz, the frequency inverter will output certain voltage, pay special attention to use.

| Function code | Function name     | Setting scope   | Factory value |
|---------------|-------------------|-----------------|---------------|
| P0.0.11       | Acceleration Time | 0000.1s~6500.0s | Machine type  |
| P0.0.12       | Deceleration Time | 0000.1s~6500.0s | Machine type  |

The acceleration time refers to time required to raise the frequency inverter from zero frequency to reference frequency of the acceleration and deceleration time (set by Function Code P0.1.07).

The deceleration time refers to time required to reduce the frequency inverter reference frequency of the acceleration and deceleration time to zero frequency.

## See the Description of the Figure below:



| Function code | Function name | Setting scope              | Factory value |
|---------------|---------------|----------------------------|---------------|
|               |               | 0:Common motor             |               |
| P0.0.13       | Type of Motor | 1:Variable-frequency motor | 0             |
|               |               | 2:Reserved                 |               |

This function code is used to set the motor type of frequency inverter with load.

## 0: Common motor

Because the heat elimination effect becomes worse when common motor runs at low speed, the corresponding electronic thermal protection value shall be regulated properly; the low speed compensation characteristic of motor protection mode is to reduce the motor over-load protection threshold when the running frequency is below 30Hz.

# 1: Variable-frequency motor

The special variable-frequency motor adopts forced air cooling, and the heat elimination effect won't be influenced by the rotation speed, so it's not necessary to reduce the protection threshold at low speed running.

| Function code | Function name                               | Setting scope                  | Factory value |
|---------------|---------------------------------------------|--------------------------------|---------------|
| P0.0.14       | Motor rated power                           | 0000.1kW~1000.0 kW             | Machine type  |
| P0.0.15       | Motor rated frequency                       | 000.01Hz~Highest Frequency     | 050.00        |
| P0.0.16       | Motor rated voltage                         | 0001V~2000V                    | Machine type  |
| P0.0.17       | Motor rated current                         | 000.01A~655.35A                | Machine type  |
| P0.0.18       | Motor Rated Rotating Speed                  | 00001rpm ~65535 rpm            | Machine type  |
| P0.0.19       | Stator resistance of asynchronous motor     | 00.001~65.535                  | Machine type  |
| P0.0.20       | Rotor resistance of asynchronous motor      | 00.001~65.535                  | Machine type  |
| P0.0.21       | Leakage inductance<br>of asynchronous motor | 000.01mH~655.35 mH             | Machine type  |
| P0.0.22       | Mutual inductance<br>of asynchronous motor  | 0000.1mH~6553.5 mH             | Machine type  |
| P0.0.23       | No-load current of asynchronous motor       | 000.01A~Rated current of motor | Machine type  |

The function codes P0.0.14~P0.0.23 are the built-in parameter of AC asynchronous motor, no matter whether V/F

control or vector control is adopted, certain requirement is for motor parameter, especially vector control, the  $P0.0.19 \sim P0.0.23$  values must be much close to the built-in parameter of motor, the more accurate the parameter value is, the better the vector control performance is. When the vector control is adopted, the motor shall be identified via the function code P0.0.24. If the motor can't be identified on the site, the parameter provided by the motor manufacturer can be input into the above corresponding function code.

| Function code | Function name                       | Setting scope                                                       | Factory value |
|---------------|-------------------------------------|---------------------------------------------------------------------|---------------|
| P0.0.24       | Parameter Identification<br>Control | 0:No action<br>1:Static identification<br>2:Complete identification | 00            |

Refer to 7.1.20 (Parameter Identification) for detailed description.

### Group P0.1 Expansion Group

| Function code | Function name                         | Setting scope                           | Factory value |
|---------------|---------------------------------------|-----------------------------------------|---------------|
|               |                                       | 0:Frequency Source A                    |               |
|               |                                       | 1:Frequency Source B                    |               |
|               |                                       | 2:Frequency Source A+B                  |               |
|               |                                       | 3:Frequency Source A-B                  |               |
| DO 1.00       | P0.1.00 Option of Frequency<br>Source | 4: Max. Value of A & B                  | 0             |
| P0.1.00       |                                       | 5:Min. Value of A & B                   | 0             |
|               |                                       | 6:Standby Frequency Source 1            |               |
|               |                                       | 7:Standby Frequency Source 2            |               |
|               |                                       | 8: Switch of Terminal among the above 8 |               |
|               |                                       | kinds                                   |               |

0: Frequency Source A

The reference frequency is given by Frequency Source A (P0.0.04).

1: Frequency Source B

The reference frequency is given by Frequency Source B (P0.1.01).

2: Frequency Source A+B

The reference frequency is given by Frequency Source A+B.

3: Frequency Source A-B

The reference frequency is given by A-B Frequency, if A-B Frequency is negative value; the frequency inverter runs in opposite direction

4: Max. Value of A & B

The reference frequency is determined by the maximum value between Frequency Source A and B.

5: Min. Value of A & B The reference frequency is determined by the minimum value between Frequency Source A and B.

6: Standby Frequency Source 1

7: Standby Frequency Source 2 Standby Frequency Source 1 and Standby Frequency Source 2 are reserved by the manufacturer as frequency sources used for special occasions in future, so the users may ignore them as usual.

8: Switch of Terminal among the above 8 kinds

The reference frequency is switched among the above 8 kinds of frequency sources by selecting different composite state of the terminals. The D200 Series Frequency Inverter can set 3 kinds of frequency sources to choose the terminals (Terminal Function 18~20, refer to the instruction for Terminal Selection Function of Frequency Source P2.0.00~P2.0.03 for more details)

| Function code | Function name                   | Setting scope                      | Factory value |
|---------------|---------------------------------|------------------------------------|---------------|
|               |                                 | 0:Keyboard Reference (No Power-off |               |
|               |                                 | Memory)                            |               |
|               |                                 | 1:Keyboard Reference (Power-off    |               |
|               |                                 | Memory)                            |               |
|               |                                 | 2:Keyboard Potentiometer Reference |               |
|               |                                 | 3: External Terminal AVI Reference | 0             |
|               | Option of Frequency Source<br>B | 4:External Terminal ACI Reference  |               |
| P0.1.01       |                                 | 5:PULS Impulse Reference (DI4)     |               |
| F0.1.01       |                                 | 6: Multiplex Directive Reference   |               |
|               |                                 | 7:Simple PLC Reference             |               |
|               |                                 | 8:PID Control Reference            |               |
|               |                                 | 9:Communication Reference          |               |
|               |                                 | 10:Operation Result 1              |               |
|               |                                 | 11:Operation Result 2              |               |
|               |                                 | 12:Operation Result 3              |               |
|               |                                 | 13:Operation Result 4              |               |

This function case has the same function with "Option of Frequency Source A" (P0.0.04), if it is needed to use, please refer to the setting method for Function Code P0.0.04 to set.

| Function code | Function name         | Setting scope | Factory value |
|---------------|-----------------------|---------------|---------------|
|               | Adjustment Volume of: |               |               |
| P0.1.02       | Frequency Source B at | 000%~150%     | 100           |
|               | superposition         |               |               |

When the reference frequency of frequency inverter is given by Frequency Source A+B and Frequency Source A-B, it defaults A to main reference and B to auxiliary Reference. This function code determines the regulation size of Frequency Source B, which is the percentage relative to the scope of Frequency Source B (set by Function Code P0.2.01)

At P0.2.01=0, the frequency of Frequency Source B is regulated relative to Highest Frequency.

At P0.2.01=1, the frequency of Frequency Source B is regulated relative to frequency of Frequency Source A.

| Function code | Function name                   | Setting scope                                                                                                                                                                                                                                                                                                       | Factory value |
|---------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| P0.1.03       | Upper Limit Frequency<br>Source | 0: Digital Reference (P0.0.08)<br>1: External Terminal AVI Reference<br>2: External Terminal ACI Reference<br>3: Multiplex Directive Reference<br>4: PULS Impulse Reference (DI4)<br>5: Communication Reference<br>6: Operation Result 1<br>7: Operation Result 2<br>8: Operation Result 3<br>9: Operation Result 4 | 0             |

This function code determines the source of the upper limit frequency.

0: Digital Reference (P0.0.08)

The upper limit frequency is determined by the value set by Function Code P0.0.08.

1: External Terminal AVI Reference

#### 2: External Terminal ACI Reference

The upper limit frequency is given by the analog input terminal. D200 Series Frequency inverter provides 2-way analog input terminal (AVI, ACI). AVI is used for voltage ( $0V \sim 10V$ ) input, ACI is used for current ( $0/4mA \sim 20mA$ ) input. As for corresponding relation curve of the input of AVI and ACI and the upper limit frequency, the users can freely choose from four kinds of the relation curves through function code P2.1.02, in which Curve 1 and Curve 2 are linear relationship able to be set through Function Code P2.0.13~P2.0.22, and Curve 3 and Curve 4 are broken line relationship with two inflection points able to be set through Function Code P2.1.04~P2.1.19. The deviation between actual voltage and sampling voltage of the analog input terminal can be adjusted through Function Code P8.1.05~P8.1.12.

#### 3: Multi-section command terminal setting

The setting frequency is set via various combination states of multi-section command terminal. The D200 Series Frequency inverter can set 4 multi-section command terminals (terminal function  $9 \sim 12$ , refer to the function description of P2.0.00 $\sim$ P2.0.03 multi-section command terminal for details).

#### 4: PULS Impulse Reference

The upper limit frequency is set by high-speed impulse frequency of digital input terminal DI4 (the terminal function is not defined). The corresponding relationship between high-speed impulse frequency and upper limit frequency can be set through Function Code P2.0.23~P2.0.26, that is, linear relationship.

#### 5: Communication Reference

The upper limit frequency is set by the upper computer through communication mode (refer to Chapter VIII for more details).

- 6: Operation Result 1
- 7: Operation Result 2
- 8: Operation Result 3
- 9: Operation Result 4

The upper limit frequency is determined by data after setting calculation of the internal operation module. Refer to the Description of Function Codes P3.2.26~P3.2.39 for more details of the operation module. The operation results can be viewed through Function Codes 9.0.46~P9.0.49.

# Note: The upper limit frequency can't be set for negative value. If it is, the upper limit frequency will be invalid.

| Function code | Function name         | Setting scope  | Factory value |  |
|---------------|-----------------------|----------------|---------------|--|
| P0.1.04       | Upper Limit Frequency | 000.00~Highest | 000.00        |  |
|               | Offset                | Frequency      | 000.00        |  |

The reference value of this function code is the offset of upper limit frequency, the superposition of this offset and upper limit frequency value set by the function code P0.1.03 will be used as the final reference value of upper limit frequency.

| Function code | Function name                | Setting scope | Factory value |  |
|---------------|------------------------------|---------------|---------------|--|
| P0.1.05       | Keyboard Reference frequency | 0: No Memory  | 0             |  |
|               | Shut-down Memory Selection   | 1: Memory     | U             |  |

### 0: No Memory

After the frequency inverter stops, the reference frequency is reset to the value given by Function Code P0.0.05, and the frequency allowance, which is conducted through Key  $\blacktriangle \& \lor$  on the keyboard or Terminal UP/DOWN, is cleared.

### 1: Memory

After the frequency inverter stops, the reference frequency is the frequency set before stop, and the frequency allowance, which is conducted through Key  $\& \forall$  on the keyboard or Terminal UP/DOWN, is saved.

# Note: this function code is valid only when the frequency source is set by the keyboard.

| Function code | Function name                                                  | Setting scope                                  | Factory value |
|---------------|----------------------------------------------------------------|------------------------------------------------|---------------|
|               | Keyboard Reference<br>frequency Action<br>Benchmark at running | 0: Running Frequency<br>1: Reference frequency | 0             |

When this function code is adopted to determine the action of Key $\blacktriangle$  on the keyboard or Terminal UP/DOWN, it is to confirm what a kind of mode is adopted to correct the frequency and the increase & decrease shall be done on the basis of running frequency or reference frequency.

#### 0: Running Frequency

The regulation shall be made on the basis of running frequency

#### 1: Reference frequency

The regulation shall be made on the basis of reference frequency

The difference between two settings is obvious when the frequency inverter is in the process of acceleration and deceleration, namely, when the running frequency differs from the reference frequency, different Option of parameters leads to great difference.

#### Note: this function code is valid only when the frequency source is set by the keyboard.

| Function code | Function name                                             | Setting scope                                              | Factory value |
|---------------|-----------------------------------------------------------|------------------------------------------------------------|---------------|
| P0.1.07       | Benchmark frequency of accelerating and Deceleration time | 0: Highest Frequency<br>1: Reference frequency<br>2: 100Hz | 0             |

#### 0: Highest Frequency

The acceleration and deceleration time refers to the time from frequency 0 to highest frequency, and it can change with the change of the highest frequency at this time.

#### 1: Reference Frequency

The acceleration and deceleration time refers to the time from frequency 0 to highest frequency, and it can change with the change of the reference frequency at this time.

#### 2:100Hz

The acceleration and deceleration time refers to the time from frequency 0 to 100Hz, and it is a fixed value at this time.

#### Note: the jogging acceleration and deceleration time is also subject to its control.

| Function code | Function name             | Setting scope   | Factory value |
|---------------|---------------------------|-----------------|---------------|
| DO 1 09       | Jogging running           | 000.00~Highest  | 002.00        |
| P0.1.08       | frequency                 | Frequency       | 002.00        |
| P0.1.09       | Jogging Acceleration time | 0000.0s~6500.0s | 0020.0        |
| P0.1.10       | Jogging Deceleration time | 0000.0s~6500.0s | 0020.0        |

The function codes above define the reference frequency and acceleration and deceleration time when the frequency inverter is at jogging running.

| Function code | Function name       | Setting scope    | Factory value |
|---------------|---------------------|------------------|---------------|
| P0.1.11       | Acceleration time 2 | 0000.00s~6500.0s | Machine type  |
| P0.1.12       | Deceleration time 2 | 0000.00s~6500.0s | Machine type  |
| P0.1.13       | Acceleration time 3 | 0000.00s~6500.0s | Machine type  |
| P0.1.14       | Deceleration time 3 | 0000.00s~6500.0s | Machine type  |
| P0.1.15       | Acceleration time 4 | 0000.00s~6500.0s | Machine type  |
| P0.1.16       | Deceleration time 4 | 0000.00s~6500.0s | Machine type  |

The function codes above have the same definitions with P0.0.11 and P0.0.12; refer to the Description of P0.0.11 and P0.0.12 for more details

The D200 Series Frequency inverter totally provides 4 groups of acceleration and deceleration time of the straight line, which can switch among 4 groups of acceleration and deceleration time through different composite state of acceleration and deceleration time selection terminals. It can set 2 acceleration and deceleration time selection terminals (terminal function 16~17, refer to the Description of Code P2.0.00~P2.0.03 for Acceleration and Deceleration Terminal Function of Function for more details)

| Function code | Function name                                                                    | Setting scope                 | Factory value |
|---------------|----------------------------------------------------------------------------------|-------------------------------|---------------|
| P0.1.17       | Frequency Switch Point between<br>Acceleration time 1 and<br>Acceleration time 2 | 000.00Hz~Highest<br>Frequency | 000.00        |
| P0.1.18       | Frequency Switch Point between<br>Deceleration time 1 and<br>Deceleration time 2 | 000.00Hz~Highest<br>Frequency | 000.00        |

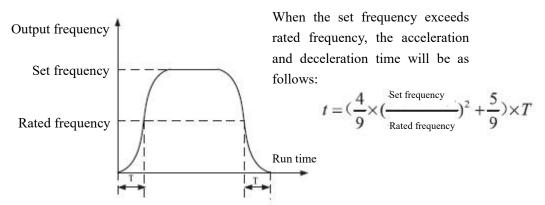
The function codes above are adopted to set the frequency of the switch point of acceleration and deceleration time 1 and acceleration and deceleration time 2. When the running frequency of the frequency inverter is less than the set value of these two function codes, the acceleration and deceleration time 2 is adopted, otherwise the acceleration and deceleration time 1 is adopted.

Note: When this function is used, the acceleration and deceleration time 1 and acceleration and deceleration time 2 can't be set for 0s.

| Function code | Function name                      | Setting scope    | Factory value |
|---------------|------------------------------------|------------------|---------------|
|               |                                    | 0: Straight Line |               |
| P0.1.19       | Acceleration and Deceleration Mode | 1: Curve S1      | 0             |
|               |                                    | 2: Curve S2      |               |

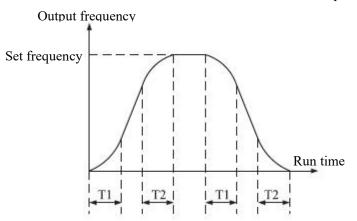
0: Acceleration and Deceleration of the Straight Line

The output frequency increases or decreases by the straight line. D200 Series Frequency inverter provides 4


groups of acceleration and deceleration time of the straight line, namely, P0.0.11 and P0.0.12, P0.1.11 and P0.1.12, P0.1.13 and P0.1.14 and P0.1.15 and P0.1.16. The switch can be selected through different composite state of acceleration and deceleration time selection terminals.

#### 1: Curve S1

The output frequency increases or decreases by Curve S1. Curve S1 is used for occasions required for gradual start or stop. Parameter P0.1.20 and P0.1.21 respectively defines the time scale of starting point and ending point of Curve S1.


#### 2: Curve S2

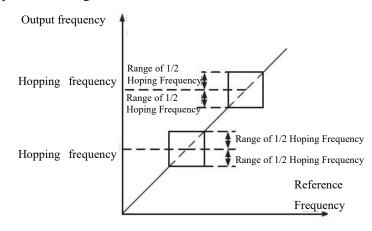
In the Curve S2, the rated frequency of the motor is always the inflection point of Curve S, as shown in the figure below. Generally, it applies for the occasions that the high-speed area above the rated frequency requires to rapidly accelerate and decelerate.



| Function code | Function name                              | Setting scope | Factory value |
|---------------|--------------------------------------------|---------------|---------------|
| P0.1.20       | Percentage of Starting Phase of<br>Curve S | 000.0%~100.0% | 030.0         |
| P0.1.21       | Percentage of Ending Phase of<br>Curve S   | 000.0%~100.0% | 030.0         |

Parameter P0.1.20 and P0.1.21 respectively defines the time scale of starting point and ending point of Curve S 1. These two parameters need to meet P0.1.20+P0.1.21 $\leq$ 100.0%, refer to the Description for the figure below:




T1 is the value set by Function Code P0.1.20, the slope of the output frequency gradually increases from zero within this period of time.

T2 is the value set by Function Code P0.1.21, the slope of the output frequency gradually decreases to zero within this period of time.

Within the time between T1 and T2, the change on slope of the output frequency keeps constant.

| Function code | Function name           | Setting scope              | Factory value |
|---------------|-------------------------|----------------------------|---------------|
| P0.1.22       | Hopping Frequency 1     | 000.00Hz~Highest Frequency | 000.00        |
| P0.1.23       | Hopping Frequency 2     | 000.00Hz~Highest Frequency | 000.00        |
| P0.1.24       | Hopping Frequency Scope | 000.00Hz~Highest Frequency | 000.00        |

The hopping frequency function is set so that running frequency of the frequency inverter can avoid load resonance band of the driving system. The D200 Series Frequency inverter can set two hopping frequency points, after setting, even the reference frequency is within load resonance band, the output frequency of the frequency inverter will also be automatically adjusted out of load resonance band to avoid running on resonant frequency, refer to the Description for the figure below:



| Function code | Function name    | Setting scope       | Factory value |
|---------------|------------------|---------------------|---------------|
| P0.1.25       | Jogging Priority | 0: Invalid 1: Valid | 0             |

This function code is used to set whether the priority of the jogging function is the highest. The jogging function includes Keyboard Jogging Function and Terminal Jogging Function.

When at P0.1.25=1, if the jogging command occurs in the running process, the switch of frequency inverter is the jogging running state.

The target frequency is the jogging frequency and the acceleration and deceleration time is the jogging acceleration and deceleration time.

| Function code | Function name                                                            | Setting scope                     | Factory value |  |
|---------------|--------------------------------------------------------------------------|-----------------------------------|---------------|--|
| P0.1.35       | Switching frequency point of deceleration time 2 and deceleration time 3 | 000.00Hz $\sim$ Highest frequency | 000.00        |  |

The above function code is used to set the frequency of the switching point between deceleration time 2 and deceleration time 3. When the frequency of the frequency converter is less than the set value of this function code, the deceleration time 3 is used, otherwise the deceleration time 2 is used.

#### **Group P0.2: Expansion Group**

| Function code | Function name                      | Setting scope                                                                       | Factory value |
|---------------|------------------------------------|-------------------------------------------------------------------------------------|---------------|
| PO 7 01       | B Frequency source range selection | 0: Relative to the highest<br>frequency<br>1: relative to the A<br>frequency source | 0             |

This function code is used to select the relative value regulated by function code P0.102. Refer to the setting of P0.102 for detailed usage.

| Function code | Function name                  | Setting scope              | Factory value |
|---------------|--------------------------------|----------------------------|---------------|
| P0.2.02       | B frequency offset at stacking | 000.00Hz~Highest Frequency | 000.00        |

This function code is used to set the frequency offset of the B frequency source, which is superimposed with the frequency value of the B frequency source as the final frequency value given by the B frequency source.

| Function code | Function name                              | Setting scope                | Factory value |
|---------------|--------------------------------------------|------------------------------|---------------|
| P0.2.03       | Unit of acceleration and deceleration time | 0: 1s<br>1: 0.1s<br>2: 0.01s | 1             |

As various loads have different requirements on acceleration and deceleration time, D200 series frequency converters provide three units of addition and subtraction time, which are 1 second, 0.1 second and 0.01 second respectively.

## Note: When modifying this function parameter, the decimal number displayed by all acceleration and deceleration times will change, and the corresponding acceleration and deceleration times will also change. Please pay special attention to the use process.

| Function code | Function name        | Setting scope | Factory value |
|---------------|----------------------|---------------|---------------|
| P0.2.04       | Frequency resolution | 1: 0.1Hz      | 2             |
|               | riequency resolution | 2: 0.01Hz     | Z             |

This function code is used to determine the resolution of all frequency-dependent function code parameters.

When P0.2.04=1, the maximum output frequency of D200 series inverter can reach 3200.0Hz.

When P0.2.04=2, the maximum output frequency of D200 series inverter is 320.00Hz.

### Note: when modifying this function parameter, the decimal number of all parameters related to frequency will change, and the corresponding frequency value will also change, so pay special attention to the use.

| Function code | Function name              | Setting scope | Factory value |
|---------------|----------------------------|---------------|---------------|
| P0.2.05       | Undervoltage point setting | 60.0%~140.0%  | 100.0         |

This function code is used to set the frequency converter bus voltage at what voltage value when the undervoltage. This function code is set as a percentage relative to the normal undervoltage point.

Detected DC under-voltage value:

Level S2/T2: 200V\*P0.2.05/100

Level T4 : 350V\*P0.2.05/100

| Function code | Function name                 | Setting scope                 | Factory value |
|---------------|-------------------------------|-------------------------------|---------------|
| P0.2.06       | Dead zone compensation switch | 0: ban<br>1: allow<br>2: keep | 1             |

The function code is used to set whether the PWM dead zone of the frequency converter is compensated. 0 means no compensation, and 1 means compensation.

| Function code | Function name                                        | Setting scope | Factory value |
|---------------|------------------------------------------------------|---------------|---------------|
| P0.2.08       | Power on to ground short circuit protection function |               | 1             |

This function code is used to set whether to turn on the power-on short-circuit protection function to the ground. Page 72

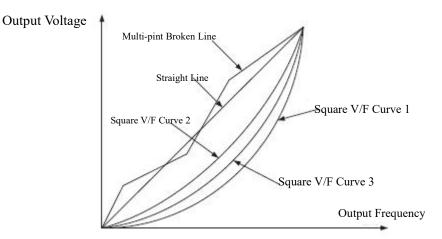
#### 6.2 Group P1 - Motor Control Parameter Group P1.0 - Basic Group

| Function code | Function name  | Setting scope              | Factory value |
|---------------|----------------|----------------------------|---------------|
|               |                | 0:Straight Line            |               |
|               |                | 1: Multi-point Broken Line |               |
| P1.0.00       | V/F Curve Mode | 2: Square V/F Curve 1      | 0             |
|               |                | 3: Square V/F Curve 2      |               |
|               |                | 4: Square V/F Curve 3      |               |

0: Straight Line V/F

Applicable for common constant torque load

1: Multi-point Broken Line


VF Relation Curve of any broken lines can be acquired through setting Function Codes P1.1.00 ~ P1.1.05.

2: Square V/F Adapted to light centrifugal loading

3: Square V/F Curve 2

4: Square V/F Curve 3

Refer to relation curve between straight line V/F and square V/F Each curve is shown in the figure below:



| Function code | Function name                    | Setting scope                                 | Factory value |
|---------------|----------------------------------|-----------------------------------------------|---------------|
| P1.0.01       | Torque Boost                     | 00.0% (Automatic Torque Boost)<br>00.1%~30.0% | 04.0          |
| P1.0.02       | Cutoff Frequency of Torque Boost | 000.00Hz~Highest Frequency                    | 050.00        |

In order to compensate the property of controlling the lower frequency torque by V/F, the boosting compensation is conducted for output voltage in low-frequency working area. Under normal circumstances, the factory value can meet the requirements, if the compensation is too great, the current fault may occur. When the load is heavier and the low-frequency torque of the motor is not enough, it suggests increasing this parameter.

When the load is lighter, this parameter can be reduced. The frequency inverter is automatic torque boost when the torque boost is set at 00.0%, the frequency inverter can automatically calculate the required torque boost value based on the parameters of the motor as stator, resistance, etc.

Torque Boost Cut-off Frequency: when the output frequency is below this set value, the torque boost is valid, in case of exceeding this set value, the torque boost is invalid

| Function code | Function name              | Setting scope | Factory value |
|---------------|----------------------------|---------------|---------------|
| P1.0.03       | V/F Slip Compensation Gain | 000.0%~200.0% | 000.0         |

This function code is only valid for asynchronous motor and the percentage relative to rated slip of motor. When it is the slip that is compensated by the motor for rated load, the rated slip of the motor can be calculated and acquired based on rated frequency of the motor and rated speed. V/F Slip Compensation can compensate asynchronous motor for the speed deviation of the motor occurred from load increase so as to make the speed able to basically keep stable.

| Function code | Function name | Setting scope               | Factory value |
|---------------|---------------|-----------------------------|---------------|
|               |               | 0: Direct Start             |               |
| P1.0.10       | Start Mode    | 1: Speed Tracking initiated | 0             |
|               |               | 2: Brake and Restart        |               |

0: Direct Start

The frequency inverter starts running from start frequency.

1: Speed Tracking initiated

The frequency inverter shall first judge the rotating speed and direction of the motor and then track down the start frequency of motor, the rotating motor smoothly starts without any surge. It is applicable for momentary interruption restart of the high inertia loads. In order to ensure the performance of rotating speed before start, accurate setting of the motor parameters is required.

#### 2: Brake before Start

First conduct DC braking and them start running from start frequency.

| Function code | Function name       | Setting scope                    | Factory value |
|---------------|---------------------|----------------------------------|---------------|
|               |                     | 0: Start from Shutdown Frequency |               |
| P1.0.11       | Speed Tracking Mode | 1: Start from Zero Speed         | 0             |
|               |                     | 2: Start from Highest Frequency  |               |

0: Start from Stop Frequency

Track down from the frequency at the moment of stop and adopt this method as usual.

1: Start from Zero Speed

Track up from zero frequency and adopt this method when start after longer stop time.

2: Start from Highest Frequency

Track down from highest frequency

#### Note: This function code is only valid when the start mode adopts speed tracking start (namely P1.0.10=1).

| Function code | Function name                | Setting scope   | Factory value |
|---------------|------------------------------|-----------------|---------------|
| P1.0.12       | Start Frequency              | 00.00Hz~10.00Hz | 00.00         |
| P1.0.13       | Hold Time of Start Frequency | 000.0s~100.0s   | 000.0         |

Start Frequency: refer to running frequency when the frequency inverter starts.

In order to ensure that the motor has a certain start torque, proper start frequency shall be given. If the setting is too great, the over-current may occur. When the reference frequency is less than start frequency, the frequency inverter cannot start and is at ready mode (when jogging, it is not subject to the impact of start frequency).

Hold Time of Start Frequency: refer to the running time of starting the frequency during the process of start.

| Function code | Function name             | Setting scope | Factory value |
|---------------|---------------------------|---------------|---------------|
| P1.0.14       | Starting DC Brake Current | 000%~100%     | 000           |
| P1.0.15       | Starting DC Brake Time    | 000.0s~100.0s | 000.0         |

Starting DC brake current: indicating the current output by the frequency inverter during the starting DC brake process, which is the percentage corresponding to the rated current of motor, the higher the starting DC braking current is, the bigger the braking force is.

Starting DC brake time: indicating the duration of outputting DC braking current during the start process of frequency inverter. When the starting DC brake time is set for 000.0, the start-up DC braking function will be invalid.

| Function code | Function name | Setting scope                                 | Factory value |
|---------------|---------------|-----------------------------------------------|---------------|
| P1.0.16       | Shutdown Mode | 0: Stop by Speed Deceleration<br>1: Free Stop | 0             |

0: Stop by Speed Deceleration

After the stop command is effective, the frequency inverter reduces the output frequency based on deceleration time and stops after the frequency is reduced to 0.

#### 1: Free Stop

After the stop command is effective, the frequency inverter immediately stops outputting and the motor stops freely based on mechanical inertia at this time.

| Function code | Function name                     | Setting scope    | Factory value |
|---------------|-----------------------------------|------------------|---------------|
| P1.0.17       | Stop DC Proking Initial Englishow | 000.00Hz~Highest | 000.00        |
| P1.0.17       | Stop DC Braking Initial Frequency | Frequency        |               |
| P1.0.18       | Stop DC Braking Hold Time         | 000.0s~100.0s    | 000.0         |
| P1.0.19       | Stop DC Braking Current           | 000%~100%        | 000           |
| P1.0.20       | Stop DC Braking Time              | 000.0s~100.0s    | 000.0         |

During the process of stop via deceleration, when the output frequency is decreased to the frequency set by P1.0.17 and wait for the waiting time set by P1.0.18, start outputting the braking current set by P1.0.19 to implement DC braking until reaching the DC braking time set by P1.0.20, and then the frequency inverter will stop DC braking.

Through properly setting the waiting time of stop DC braking P1.0.18, the faults such as over-current due to DC braking started at higher speed can be avoided. The stop DC braking current P1.0.19 is the percentage corresponding to the rated current of motor. The higher the stop DC braking current is, the bigger the braking force is. When the stop DC braking time is set for 000.0, the stop DC braking function will be invalid.

Note: P1.0.17 and P1.0.18 can also achieve climbing function of inverter. This function can improve the instability of stopping. During the stopping process, the inverter decelerates to frequency set by P1.0.17. After pausing for time set by P1.0.18, the inverter continues to decelerate until fully stop. Generally, P1.0.17 IS SET AS 0.05 Hz and P1.0.18 is set as 0.1s,

| Function code | Function name    | Setting scope | Factory value |
|---------------|------------------|---------------|---------------|
| P1.0.21       | Braking Use Rate | 000%~100%     | 100           |

The function code is used to regulate the duty ratio of braking unit. The higher the braking use rate is, the higher the braking unit operation duty ratio is, the stronger the braking effect is, however, the bus voltage surge of frequency inverter is bigger during the braking process.

| Function code | Function name     | Setting scope   | Factory value |
|---------------|-------------------|-----------------|---------------|
| P1.0.22       | Carrier Frequency | 0.50kHz~16.0kHz | Туре          |

This function code is used to regulate the carrier frequency of the frequency inverter. The regulation of the carrier frequency can lower the noise of the motor and reduce the line-to-ground leakage current and the interference arising from the frequency inverter. When the carrier frequency is lower, the high-order harmonic components of output current increase, the losses of motor increase and the temperature of the motor decreases, but the losses of the frequency is higher, the losses of motor are reduced and the temperature rise of the motor decreases, but the losses of the frequency inverter increase and the temperature of the frequency inverter rise, so the interference is enhanced.

The regulation of the carrier frequency can influence the following performance:

| Carrier Frequency                      | $Low \rightarrow High$ |
|----------------------------------------|------------------------|
| Noise of Motor                         | Large → Small          |
| Output Current Waveform                | $Bad \rightarrow Good$ |
| Temperature Rise of Motor              | High $\rightarrow$ Low |
| Temperature Rise of Frequency inverter | $Low \rightarrow High$ |
| Current Leakage                        | Small → Large          |
| External Radiation Interference        | Small → Large          |

| Function code | Function name | Setting scope                   | Factory value |
|---------------|---------------|---------------------------------|---------------|
|               |               | 0: Rotate at running            |               |
| P1.0.23       |               | 1: Continuous Running           | 0             |
|               |               | 2: Control based on Temperature |               |

The function code is used to select the operation mode of cooling fan.

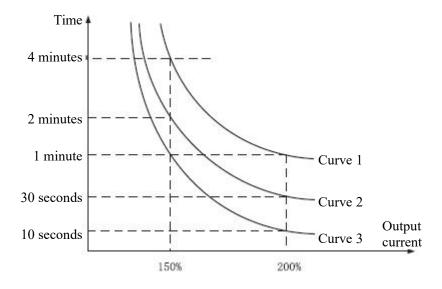
P1.0.23=0, the fan will work when the frequency inverter runs and the fan will stop when the frequency inverter stops.

P1.0.23=1, after the frequency inverter is powered on, the fan will work all the time.

P1.0.23=2, when the heat radiator temperature exceeds 35  $^{\circ}$ C, the fan will work, when the temperature is below 35  $^{\circ}$ C, the fan won't work.

| Function code | Function name                   | Setting scope  | Factory value |  |
|---------------|---------------------------------|----------------|---------------|--|
|               |                                 | 0: Prohibition |               |  |
| D1 0 24       |                                 | 1 :Curve 1     | 1             |  |
| P1.0.24       | Motor Overload Protection       | 2 :Curve 2     | 1             |  |
|               |                                 | 3 :Curve 3     |               |  |
| P1.0.25       | Motor Overload Protection Level | 00.20~10.00    | 01.00         |  |
| P1.0.26       | Motor Overload Alarm System     | 050%~100%      | 080           |  |

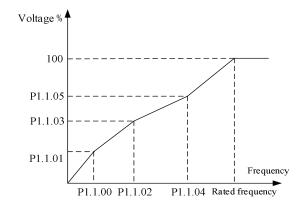
When at P1.0.24=0, the frequency inverter hasn't had overload protection function to the motor, it suggests heating the relay between frequency inverter and motor.


When at P1.0.24=1,2 or 3, the frequency inverter shall judge whether the motor is overload or not based on inverse-time characteristic curve of the overload protection of the motor.

The users need to correctly set the value of P1.0.25 based on actual overload capability and load conditions of the motor, if the set value is too small, it is easy to report the motor overload fault (Err10), while the set value is too large, the motor may have the risk of being burnt, especially for the conditions that the rated current of the frequency inverter is larger than the rated current of the motor. When at P1.0.25=01.00, it means that the motor overload protection level is 100% rated current of the motor.

Page 76

The Function Code P1.0.26 is used to define when the early alarm is given before overload fault protection of the motor. The larger the value is, the smaller the early alarm lead is. When the accumulative output current of the frequency inverter is larger than product of multiplying overload inverse time curve by P1.0.26, the multi-functional output terminal of the frequency inverter outputs Signal ON, and the corresponding multi-functional output terminal is overload pre-alarm of the motor (6).


The overload inverse-time characteristic curve of D200 Series Frequency inverter is shown in the figure below:



Overload Inverse-time Characteristic Curve

| Function code | Function name                     | Setting scope                    | Factory value |
|---------------|-----------------------------------|----------------------------------|---------------|
| P1.1.00       | Broken Line V/F Point 1 Frequency | 000.00Hz~P1.1.02                 | 000.00        |
| P1.1.01       | Broken Line V/F Point 1 Voltage   | 000.0%~100.0%                    | 000.0         |
| P1.1.02       | Broken Line V/F Point 2 Frequency | P1.1.00~P1.1.04                  | 000.00        |
| P1.1.03       | Broken Line V/F Point 2 Voltage   | 000.0%~100.0%                    | 000.0         |
| P1.1.04       | Broken Line V/F Point 3 Frequency | P1.1.02~Rated frequency of motor | 000.00        |
| P1.1.05       | Broken Line V/F Point 3 Voltage   | 000.0%~100.0%                    | 000.0         |

The above functions define V/F Curve with multi-point broken line, and the voltage of the above broken points is the percentage relative to the rated voltage of the motor. V/F Curve with multi-point broken line is given based on the load characteristics of the motor, but attention shall be paid that the relationship between three voltage points and frequency points must meet: P1.1.00<P1.1.02<P1.1.04, P1.1.01<P1.1.03<P1.1.05, refer to the Description in the figure below:



Note: The voltage can't be set too high at low frequency, else the frequency inverter will give over-current alarm or will be burnt.

| Function code | Function name        | Setting scope | Factory value |
|---------------|----------------------|---------------|---------------|
| P1.1.06       | V/F Overexcited Gain | 000~200       | 120           |

In the deceleration process of the frequency inverter, the pumping voltage can make DC bus voltage rise, the overexcited control can restrain the rise of DC bus voltage to avoid occurrence of over-voltage fault. The larger the overexcited gain is, the stronger the restraint effect is, but if the overexcited gain is too large, it is easy to lead to increase of the output current, even over-current fault. As for the occasions where the rise of DC bus voltage is not great or has brake resistance, it suggests setting the overexcited gain at 0.

#### Note: this function code is only valid when the control mode is V/F Control (namely P0.0.02=0).

| Function code | Function name            | Setting scope        | Factory value |
|---------------|--------------------------|----------------------|---------------|
| P1.1.09       | Inversion Control Enable | 0: Allow 1: Prohibit | 0             |

This function code is used to set whether the frequency inverter is allowed to run at reverse state.

When at P1.1.09=0, the frequency inverter is allowed to run at reversal state.

When at P1.1.09=1, the frequency inverter is prohibited to run at reversal state, which is mainly used for the occasions that the load is unable to reverse.

#### Note: the director of this function code is defined by the set value relative to running direction (P0.0.06)

| Function code | Function name                 | Setting scope   | Factory value |
|---------------|-------------------------------|-----------------|---------------|
| P1.1.10       | Forward and Reverse Dead Time | 0000.0s~3000.0s | 0000.0        |

This function code is used to set the duration time of outputting 0Hz when the frequency inverter is in the process of forward and reverse switch.

| Function code | Function name              | Setting scope |                | Factory value |
|---------------|----------------------------|---------------|----------------|---------------|
| P1.1.11       | Power-on Running Selection | 0: Running    | 1: Not Running | 0             |

This function code is used to set when the frequency inverter runs in response to valid running command at the moment of power-on.

When at P1.1.11=0, the frequency inverter directly responds to the running

When at P1.1.11=1, frequency inverter can't respond to the running. It cannot run until the running command is valid again after it is cancelled.

| Function code | Function name | Setting scope   | Factory value |
|---------------|---------------|-----------------|---------------|
| P1.1.12       | Droop Control | 00.00Hz~10.00Hz | 00.00         |

When multiple motors drive the same load, unbalanced load distribution will be caused. The droop control will make the output frequency be decreased with increasing of load, so as to realize balanced load of multiple motors. The reference value of function code is the decreased frequency at rated load.

| Function code | Function name                   | Setting scope | Factory value |
|---------------|---------------------------------|---------------|---------------|
| P1.1.20       | VF oscillation suppression mode | 1~4           | 1             |

VF oscillation suppression mode: when the motor oscillates, different oscillation suppression methods can achieve different oscillation suppression effects.

| Function code | Function name                         | Setting scope | Factory value |
|---------------|---------------------------------------|---------------|---------------|
| P1.1.21       | Response time of VF slip compensation | 0-10.0s       | 0.5           |

When the slip compensation function P1.0.03 is enabled, the function code P1.1.21 can be used to adjust the slip compensation response time. The smaller the response time is, the faster the compensation response is. When the compensation is slow, the function code value is reduced. When there is oscillation, lengthen the value of the function code.

| Function code | Function name                      | Setting scope | Factory value |
|---------------|------------------------------------|---------------|---------------|
| P1.1.22       | VF online torque compensation gain | 0~200         | 100           |

In the automatic torque lifting (P1.0.01=0), the torque compensation can be improved by using this function code. Generally, the function code does not need to be changed after stator resistance identification. Too little may cause too little compensating torque. Excessive compensation current is too large. You are advised to set the function code to 100 after parameter identification.

| Function code | Function name         | Setting scope | Factory value |
|---------------|-----------------------|---------------|---------------|
| P1.1.34       | Tuning KP coefficient | 1~200         | 100           |

KP parameter used in parameter identification. When there is oscillation, the value is reduced by a step size of 20 until it does not oscillate. Too small will lead to inaccurate identification, and too large will lead to oscillations and inaccurate identification, which generally do not need to be adjusted.

| Function code | Function name         | Setting scope | Factory value |
|---------------|-----------------------|---------------|---------------|
| P1.1.35       | Tuning KI coefficient | 1~200         | 100           |

KI parameter used in parameter identification. When there is oscillation, the value is reduced by a step size of 20 until no oscillation occurs. Too small will lead to inaccurate identification, and too large will lead to oscillations and inaccurate identification, which generally do not need to be adjusted.

| Group P1.2: Expansion Group |               |                            |               |               |  |
|-----------------------------|---------------|----------------------------|---------------|---------------|--|
|                             | Function code | Function name              | Setting scope | Factory value |  |
|                             | P1.2.01       | VF oscillation suppression | 0~100         | Machine type  |  |

This function code is used to set the suppression effect when the motor oscillates. The greater the setting value, the better the suppression effect. However, if the setting is too large, it will adversely affect the VF operation. Therefore, the value should be as small as possible under the premise of satisfying the suppression.

#### Note: Only accurate rated current and no-load current value can produce good suppression effect.

| Function code | Function name                 | Setting scope | Factory value |
|---------------|-------------------------------|---------------|---------------|
| D1 2 02       | Whether the carrier frequency | 0 No. 1 Vec   | 1             |
| P1.2.02       | is adjusted with temperature  | 0: No 1: Yes  | 1             |

This function code is used to set whether the carrier frequency is adjusted in a certain range with the heat sink temperature.

When P1.2.02=0, the carrier frequency does not adjust with the radiator temperature, and keeps the given value unchanged

When P1.2.02=1, when the heat sink temperature increases, the carrier frequency automatically decreases; when the heat sink temperature decreases, the carrier frequency restores to the given value.

| Function code | Function name        | Setting scope | Factory value |
|---------------|----------------------|---------------|---------------|
| P1.2.11       | Speed tracking speed | 1~100         | 20            |

This function code is used to set the speed tracking speed when the startup mode is tracking (that is, P1.0.10=1). The larger the value is, the faster the tracking is. However, if the value is too large, the tracking effect is poor.

| Function code | Function name                 | Se       | etting scope           | Factory value |
|---------------|-------------------------------|----------|------------------------|---------------|
| P1.2.12       | The DPWM switches the upper f | requency | $00.00Hz{\sim}15.00Hz$ | 12.00         |

This function code is valid only for VF control

When the asynchronous machine VF is running, the wave mode is determined. If the value is lower than this, it is the 7-segment continuous modulation mode. Conversely, it is the 5-segment intermittent modulation mode.

The switching loss of the inverter is larger, but the current ripple is smaller. 5 section continue debugging mode switch loss is small, current ripple is large; But at high frequency may lead to motor operation instability, generally do not need to modify.

| Function code | Function name       | Setting scope                                                                                                                                                                                                                                                                      | Factory value |
|---------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| P1.2.13       | PWM modulation mode | Ones:<br>0: Asynchronous modulation<br>1: Synchronization<br>modulation<br>Tens:<br>0: Three-phase modulation<br>and two-phase modulation<br>coexist<br>1: All three - phase<br>modulation<br>Hundreds:<br>0: Low frequency carrier limit<br>1: Low-frequency carrier<br>unlimited | 0             |

Three - phase modulation is a 7 - segment continuous modulation method. Two - phase modulation is a 5 - segment intermittent modulation method. 0: Switches between segment 7 and segment 5 based on function code P1.2.12. 1: The whole process is seven-stage wave.

0: The low frequency carrier decreases.

1: Low frequency carrier is not reduced, subject to carrier frequency setting.

| Function code | Function name | Setting scope                                                  | Factory value |
|---------------|---------------|----------------------------------------------------------------|---------------|
| P1.2.14       |               | 00: Random PWM is invalid<br>01~10:PWM carrier random<br>depth | 00            |

The setting of random PWM can make the monotonous and harsh motor sound more gentle, and can help to reduce the external electromagnetic interference. When the random PWM depth is set to 0, the random PWM is invalid. Adjusting random PWM to different depths will get different effects.

| Function code | Function name                          | Setting scope  | Factory value |
|---------------|----------------------------------------|----------------|---------------|
| D1 2 15       | East annual line it is a small langest | 0: Not enabled | 1             |
| P1.2.15       | Fast current limiting enablement       | 1: can make    | 1             |

Enabling the fast current limiting function can minimize the overcurrent fault of the converter and ensure the uninterrupted operation of the converter.

If the frequency converter is in the fast current limiting state for a long time, the frequency converter may be damaged by overheating, which is not allowed. Therefore, the frequency converter will report the fast current limiting timeout fault (Err34) when it is in the fast current limiting state for a long time, indicating that the frequency converter is overloaded and needs to stop.

| Function code | Function name | Setting scope           | Factory value |
|---------------|---------------|-------------------------|---------------|
| P1.2.20       | AVR function  | 0: effective 1: invalid | 0             |

This function code is used to set whether to enable the AVR function.

| Function code | Function name                     | Setting scope   | Factory value |
|---------------|-----------------------------------|-----------------|---------------|
|               |                                   | 0: Not enabled  | 1             |
| P1.2.29       | Enable phase short circuit detect | 10n 1: can make | 1             |

This function code is used to set whether to enable the power-on interphase short circuit protection function.

#### 6.3 Group P2 - Input/Output Terminal Function

#### **Group P2.0: Basic Group**

| Function code | Function name                   | Setting scope | Factory value                       |
|---------------|---------------------------------|---------------|-------------------------------------|
| P2.0.00       | DI1 Terminal Function Selection | 0~59          | 01 (FWD Running)                    |
| P2.0.01       | DI2 Terminal Function Selection | 0~59          | 02 (REV Running)                    |
| P2.0.02       | DI3 Terminal Function Selection | 0~59          | 09 (Multiplex Directive Terminal 1) |
| P2.0.03       | DI4 Terminal Function Selection | 0~59          | 10 (Multiplex Directive Terminal 2) |

The above function codes are used to set the function of digital input terminals, the available functions are Table below:

| Chapter | 6 Descriptio | on of Parameters |
|---------|--------------|------------------|
|---------|--------------|------------------|

| Setting<br>value | Function                                                 | Description                                                                                                                                                                                                                                     |
|------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                | No Function                                              | Define the not in-service terminals as "Unused" to prevent malfunctions.                                                                                                                                                                        |
| 1                | Forward Running (FWD)                                    | Control FWD and REV of the frequency inverter through these two                                                                                                                                                                                 |
| 2                | Reverse Running (REV)                                    | terminals.                                                                                                                                                                                                                                      |
| 3                | 3-line Running Control                                   | Confirm that the running mode of the frequency inverter is three-line control mode through this terminal. Refer to the Description for Terminal Control in 7.1.1.                                                                               |
| 4                | Forward Jogging                                          | Control FWD Jogging and REV Jogging through of the frequency                                                                                                                                                                                    |
| 5                | Reverse Jogging                                          | inverter through these two terminals and be valid for any running control mode. The running frequency and acceleration & deceleration time of the inching refer to the description for P0.1.08, P0.1.09 and P0.1.10.                            |
| 6                | Terminal UP                                              | When the reference frequency is given by the keyboard, increase or                                                                                                                                                                              |
| 7                | Terminal DOWN                                            | decreases the reference frequency through these two terminals.                                                                                                                                                                                  |
| 8                | Free Stop                                                | When the terminal state is valid, the frequency inverter is blocked to output, the shut-down of the motor is not subject to the control of the frequency inverter at this moment. This mode has same meaning of free stop described in P1.0.16. |
| 9                | Multiplex Directive Terminal 1                           |                                                                                                                                                                                                                                                 |
| 10               | Multiplex Directive Terminal 2                           | Realize the references of 16 kinds of the directive through 16 kinds of                                                                                                                                                                         |
| 11               | Multiplex Directive Terminal 3                           | states of these four terminals.                                                                                                                                                                                                                 |
| 12               | Multiplex Directive Terminal 4                           |                                                                                                                                                                                                                                                 |
| 13               | Fault Reset (RESET)                                      | Realize remote fault reset through this terminal and have same function with RESET Key on Keyboard.                                                                                                                                             |
| 14               | Running Pause                                            | When this terminal state is valid, the terminal slows down and stops,<br>but all running parameter are memorized. When this terminal state is<br>invalid, the frequency inverter is resets to running state before stop.                        |
| 15               | External Fault Input                                     | When this terminal state is valid, the frequency inverter gives an alarm of Err13, and then the fault is handled based on fault protection action mode.                                                                                         |
| 16               | Acceleration & Deceleration                              |                                                                                                                                                                                                                                                 |
| 10               | Time Selection Terminal 1<br>Acceleration & Deceleration | Realize the switch among four groups of straight acceleration and deceleration time, refer to Attached Table 3 for more details.                                                                                                                |
| 17               | Time Selection Terminal 2                                |                                                                                                                                                                                                                                                 |
| 18               | Frequency Source Selection<br>Terminal 1                 | When D0 1 00-9 the function of these terms 1. 1111 111 111 71 0                                                                                                                                                                                 |
| 19               | Frequency Source Selection<br>Terminal 2                 | When P0.1.00=8, the function of these terminals will be valid. The 8 frequency sources are switched via the 8 states of 3 terminals. Refer to Attached Table 2 for detailed contents.                                                           |
| 20               | Frequency Source Selection<br>Terminal 3                 |                                                                                                                                                                                                                                                 |
| 21               | Running Command Selection<br>Terminal 1                  | The running control modes are switched via the ON/OFF state of the                                                                                                                                                                              |
| 22               | Running Command Selection<br>Terminal 2                  | two terminals. Refer to Attached Table 4 for detailed contents.                                                                                                                                                                                 |
| 23               | UP/DOWN Reference Reset                                  | When the reference frequency is given by the keyboard, this terminal can remove the frequency allowance adjusted by Terminal UP/DOWN or Key $\blacktriangle \& V$ on Keyboard to reset the reference frequency to the value given by P0.0.05.   |
| 24               | Prohibition of Acceleration & Deceleration               | When this terminal state is valid, the output frequency of the frequency inverter is not impacted by the signal (except for stop command)                                                                                                       |

| Setting<br>value | Function                                | Description                                                                                                                                                                                                                                                                             |
|------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 25               | PID Pause                               | PID Control fails temporarily, the frequency inverter maintains the<br>running of current output frequency and can't conduct PID Regulation<br>of the frequency source.                                                                                                                 |
| 26               | PLC State Reset                         | During executing process of PLC, the frequency inverter is reset the frequency inverter to initial state of Simple PLC through this terminal                                                                                                                                            |
| 27               | Wobbulating Pause                       | The frequency inverter outputs in central frequency and the wobbulating function suspends.                                                                                                                                                                                              |
| 28               | Counter Input                           | Be used for defining the output terminal of count impulse. If it is high-speed pulse, connect Terminal DI4                                                                                                                                                                              |
| 29               | Counter Reset                           | Conduct reset handling to counter.                                                                                                                                                                                                                                                      |
| 30               | Length Counting Input                   | Be used for defining the output terminal of length count impulse. If it is high-speed pulse, connect Terminal D14.                                                                                                                                                                      |
| 31               | Length Reset                            | Conduct reset handling to length.                                                                                                                                                                                                                                                       |
| 32               | Torque Control Prohibition              | Prohibit the frequency inverter from running in torque control mode,<br>and the frequency inverter only can run in speed control mode.                                                                                                                                                  |
| 33               | PULS Impulse Input                      | Define PULS Impulse Input Terminal and connect Terminal DI4.                                                                                                                                                                                                                            |
| 34               | Immediate DC Brake                      | When this terminal state is valid, the frequency inverter is directly switched to DC Switch State.                                                                                                                                                                                      |
| 35               | External Fault Normally-closed<br>Input | When this terminal state is invalid, the frequency inverter gives an alarm of Err13, and then the fault is handled based on fault protection action mode.                                                                                                                               |
| 36               | Frequency Modification Enable           | When this terminal state is invalid, the frequency inverter cannot<br>respond the modification to frequency.<br>When this terminal state is valid, the frequency inverter responds the<br>modification to frequency.                                                                    |
| 37               | PID Action Direction Negation           | When this terminal state is valid, the direction of PID Action is opposite to the direction given by P4.0.03. Additionally, when P0.0.06=2, the terminal is valid and the running direction adopts reversed direction.                                                                  |
| 38               | External Stop Terminal 1                | When the running control mode is keyboard control (P0.0.03=0), the terminal can stop through this terminal.                                                                                                                                                                             |
| 39               | External Stop Terminal 2                | In any of running control modes, the frequency inverter can slow<br>down and stop at deceleration time 4 through this terminal.                                                                                                                                                         |
| 40               | PID Integral Stop                       | When the units digit of P4.2.08 is 1 (namely the integral separation is valid and this terminal is valid, the functions of integral regulation of PID stops temporarily, but the functions of proportional regulation and integral regulation of PID are still valid.                   |
| 41               | PID Parameter Switch                    | When the switch conditions of PID parameters are the terminal (P4.0.13=1), this terminal state is invalid, adopt PID Parameter 1.<br>When this terminal state is valid, adopt PID Parameter 2.                                                                                          |
| 42               | Speed Control/Torque Control<br>Switch  | Realize the switch of the frequency inverter between torque control mode and speed control mode. This terminal state is invalid, the frequency inverter runs in setting mode of P1.1.13 (Speed/Torque Control Mode), when this terminal state is valid, it is switched to another mode. |
| 43               | Emergency Stop                          | When this terminal is valid, the frequency inverter outputs the voltage<br>in enclosed mode and freely stops by inertia.                                                                                                                                                                |
| 44               | Deceleration DC Brake                   | When the terminal state is valid, the frequency inverter slows down to<br>Start Frequency of Stop DC Brake and then is switched to Stop DC<br>Brake State.                                                                                                                              |
| 45               | User-Defined Fault 1                    | When: User-Defined Fault 1 and 2 are valid, the frequency inverter                                                                                                                                                                                                                      |
| 46               | User-Defined Fault 2                    | respectively give an alarm of Err21 and Err22 and then the faults are handled based on fault protection action mode.                                                                                                                                                                    |

Chapter 6 Description of Parameters

| Setting<br>value | Function                           | Description                                                                                                                                                   |
|------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 47               | Running Time Reset                 | During the running process, it is to conduct reset handling<br>for current running time, current running time can be<br>viewed through Function Code P9.0.23. |
| 48               | Timer Input Terminal 1             | When internal timer is controlled by this terminal, this terminal controls the Start or Stop of the timer, refer to the Description of Function Code P3.2.23. |
| 49               | Timer Input Terminal 2             | When internal timer is controlled by this terminal, this terminal controls the Start or Stop of the timer, refer to the Description of Function Code P3.2.23. |
| 50               | Timer Reset Terminal 1             | When internal timer reset is controlled by this terminal, this terminal state is valid, the timer resets, refer to the Description of Function Code P3.2.23.  |
| 51               | Timer Reset Terminal 2             | When internal timer reset is controlled by this terminal, this terminal state is valid, the timer resets, refer to the Description of Function Code P3.2.23.  |
| 52               | Reserved                           |                                                                                                                                                               |
| 53               | Reserved                           |                                                                                                                                                               |
| 54               | Distance Reset                     | Conduct reset handling to the distance                                                                                                                        |
| 55               | Integral Computation Reset         | Reset the integral computation in operation module                                                                                                            |
| 56~59            | User Function 1~4                  | Reserved                                                                                                                                                      |
| 60               | Start by tracing rmp is prohibited | When set as starting by tracing rmp (P1.0.10=1), this terminal is effective and turns to start directly.                                                      |

Attached Table 1 Description for Functions of Multiplex Directive Terminals

| Terminal 4 | Terminal 3 | Terminal 2 | Terminal 1 | Multiplex Directive<br>Reference               | Corresponding<br>parameter |
|------------|------------|------------|------------|------------------------------------------------|----------------------------|
| OFF        | OFF        | OFF        | OFF        | Multiplex Directive 0                          | P3.0.03                    |
| OFF        | OFF        | OFF        | ON         | Multiplex Directive 0                          | P3.0.05                    |
| OFF        | OFF        | ON         | OFF        | Multiplex Directive 1<br>Multiplex Directive 2 | P3.0.07                    |
| OFF        | OFF        | ON         | ON         | Multiplex Directive 2<br>Multiplex Directive 3 | P3.0.09                    |
| OFF        | ON         | OFF        | OFF        | Multiplex Directive 3                          | P3.0.11                    |
| OFF        |            | OFF        |            | 1                                              | P3.0.11<br>P3.0.13         |
|            | ON ON      |            | ON         | Multiplex Directive 5                          |                            |
| OFF        | ON         | ON         | OFF        | Multiplex Directive 6                          | P3.0.15                    |
| OFF        | ON         | ON         | ON         | Multiplex Directive 7                          | P3.0.17                    |
| ON         | OFF        | OFF        | OFF        | Multiplex Directive 8                          | P3.0.19                    |
| ON         | OFF        | OFF        | ON         | Multiplex Directive 9                          | P3.0.21                    |
| ON         | OFF        | ON         | OFF        | Multiplex Directive 10                         | P3.0.23                    |
| ON         | OFF        | ON         | ON         | Multiplex Directive 11                         | P3.0.25                    |
| ON         | ON         | OFF        | OFF        | Multiplex Directive 12                         | P3.0.27                    |
| ON         | ON         | OFF        | ON         | Multiplex Directive 13                         | P3.0.29                    |
| ON         | ON         | ON         | OFF        | Multiplex Directive 14                         | P3.0.31                    |
| ON         | ON         | ON         | ON         | Multiplex Directive 15                         | P3.0.33                    |

Explanation: when the multiplex directive corresponds to frequency, the corresponding parameter is the percentage relative to highest frequency.

When the multiplex directive corresponds to torque, the corresponding parameter is the percentage relative to digital reference torque.

When the multiplex directive corresponds to PID, the corresponding parameter is the percentage relative to PID Reference Feedback range.

Page 84

| Attached Table 2 Description for Functions of Frequency Source Selection Terminals |            |            |                                                     |  |
|------------------------------------------------------------------------------------|------------|------------|-----------------------------------------------------|--|
| Terminal 3                                                                         | Terminal 2 | Terminal 1 | Option of frequency source                          |  |
| OFF                                                                                | OFF        | OFF        | Frequency source A (correspond to P0.1.00=0)        |  |
| OFF                                                                                | OFF        | ON         | Frequency source B (correspond to P0.1.00=1)        |  |
| OFF                                                                                | ON         | OFF        | Frequency source A+B (correspond to P0.1.00=2)      |  |
| OFF                                                                                | ON         | ON         | Frequency source A-B (correspond to P0.1.00=3)      |  |
| ON                                                                                 | OFF        | OFF        | Max. value of A & B (correspond to P0.1.00=4)       |  |
| ON                                                                                 | OFF        | ON         | Min. value of A & B (correspond to P0.1.00=5)       |  |
| ON                                                                                 | ON         | OFF        | Backup frequency source 1 (correspond to P0.1.00=6) |  |
| ON                                                                                 | ON         | ON         | Backup frequency source 2 (correspond to P0.1.00=7) |  |

Attached Table 2 Description for Functions of Frequency Source Selection Terminals

Attached Table 3 Description for Functions of Acceleration and Deceleration Time Selection Terminals

| Terminal 2 | Terminal 1 | Option of acceleration/ deceleration time | Corresponding parameters |
|------------|------------|-------------------------------------------|--------------------------|
| OFF        | OFF        | Acceleration and deceleration time 1      | P0.0.11, P0.0.12         |
| OFF        | ON         | Acceleration and deceleration time 2      | P0.1.11, P0.1.12         |
| ON         | OFF        | Acceleration and deceleration time 3      | P0.1.13, P0.1.14         |
| ON         | ON         | Acceleration and deceleration time 4      | P0.1.15, P0.1.16         |

Attached Table 4 Description for Functions of Running Command Selection Terminals

| Current<br>Running<br>Control Mode | Terminal 2                                                                                                 | Terminal 1 | Running Control Mode  |  |
|------------------------------------|------------------------------------------------------------------------------------------------------------|------------|-----------------------|--|
| Keyboard                           | OFF                                                                                                        | ON         | Terminal Control      |  |
| Control                            | ON                                                                                                         | OFF        | Communication Control |  |
| (P0.0.03=0)                        | ON                                                                                                         | ON         | Communication Control |  |
| Terminal                           | OFF                                                                                                        | ON         | Keyboard Control      |  |
| Control                            | ON                                                                                                         | OFF        | Communication Control |  |
| (P0.0.03=1)                        | ON                                                                                                         | ON         | Keyboard Control      |  |
| Communication                      | OFF                                                                                                        | ON         | Keyboard Control      |  |
| Control                            | ON                                                                                                         | OFF        | Terminal Control      |  |
| (P0.0.03=2)                        | ON                                                                                                         | ON         | Keyboard Control      |  |
| Note: when Term                    | Note: when Terminal 1 and Terminal 2 are OFF, it is the running control mode set by Function Code P0.0.03. |            |                       |  |

| Function code | Function name     | Setting scope | Factory value |
|---------------|-------------------|---------------|---------------|
| P2.0.10       | DI Filtering Time | 0.000s~1.000s | 0.010         |

This function code is used to set the software filtering time of terminal DI input state. If the occasions, which use Terminal DI Input, are easily to lead to false operation by interference, this parameter can be increased to enhance the anti-interference ability, but the increase of the filtering time may cause slow response of Terminal DI.

|  | Function code | Function name             | Setting scope         | Factory value |
|--|---------------|---------------------------|-----------------------|---------------|
|  |               |                           | 0: Two-line Type 1    |               |
|  | P2.0.11       | External Terminal Running | 1: Two- line Type 2   | 0             |
|  |               | Control Mode              | 2: Three- line Type 1 | 0             |
|  |               |                           | 3: Three-line Type 2  |               |

This function code defines that when the control running mode is terminal control (namely P0.0.03=1), there are four different modes to control the running of the frequency inverter. Refer to Terminal Control in 7.1.1 for more details.

| Function code | Function name                | Setting scope         | Factory value |
|---------------|------------------------------|-----------------------|---------------|
| P2.0.12       | UP/DOWN Terminal Change Rate | 00.001Hz/s~65.535Hz/s | 01.000        |

The function code defines that when Terminal UP/DOWN is used to regulate the reference frequency, set the rate of frequency variation.

When P0.2.04 (Decimal Point of Frequency) is 2, the value range is 00.001Hz/s~65.535Hz/s. When P0.2.04 (Decimal Point of Frequency) is 1, the value range is 000.01Hz/s~655.35Hz/s.

| Function code  | Function name                                                                  | Setting scope   | Factory value |
|----------------|--------------------------------------------------------------------------------|-----------------|---------------|
| P2.0.13        | Minimum Input of Curve 1                                                       | 00.00V~P2.0.15  | 00.00         |
| <b>D2</b> 0 14 | P2.0.14 Corresponding reference for<br>Minimum Input of Curve 1 -100.0%~100.0% |                 | 000.0         |
| P2.0.14        |                                                                                |                 |               |
| P2.0.15        | Maximum Input of Curve 1                                                       | P2.0.13~10.00V  | 10.00         |
| <b>D2</b> 0 1( | Corresponding reference for                                                    | 100.00/ 100.00/ | 100.0         |
| P2.0.16        | Maximum Input of Curve 1                                                       | -100.0%~100.0%  | 100.0         |
| P2.0.17        | AVI Filtering time                                                             | 00.00s~10.00s   | 00.10         |

The above function codes are used to set the relation between analog input and corresponding reference value, that is, straight line relationship.

When the voltage of analog input is greater than the given "Max. Input of Curve 1" (P2.0.15), the analog is calculated at "Max. Input of Curve 1"; similarly when the voltage of analog input is lower than the given "Min. Input of Curve 1" (P2.0.13), the calculation shall be at min. input or 0.0% according to the setting of " Curve below Mix. Input Reference Selection".

AVI Input Filtering time is used to set the software filtering time of AVI, when the on-site analog is easily to be interrupted, the filtering time shall be increased to make the detected analog tend to be stable, but the greater filtering time makes the response speed of the analog detection become slow, how to set needs to balance based on actual situations of the applications.

Explanation: when the analog inputs corresponding frequency, the corresponding given value is the percentage relative to highest frequency.

When the analog inputs corresponding torque, the corresponding given value is the percentage relative to digital reference torque.

When the analog inputs corresponding PID, the corresponding reference value is the percentage relative to PID Reference Feedback range.

When the analog inputs corresponding time, the corresponding given value is the percentage relative to running time (P3.1.02).

NOTE: The default value of inverter's analog input is  $0V \sim 10V$ . If the input is  $0mA \sim 20mA$ , it will remain  $0V \sim 10V$ ; if the input is  $4mA \sim 20mA$ , it will remain  $2V \sim 10V$ .

| Function code                                                                  | Function name                                           | Setting scope  | Factory value |
|--------------------------------------------------------------------------------|---------------------------------------------------------|----------------|---------------|
| P2.0.18                                                                        | Minimum Input of Curve 2                                | 00.00V~P2.0.20 | 00.00         |
| P2.0.19 Corresponding reference for Minimum Input of<br>Curve 2 -100.0%~100.0% |                                                         | -100.0%~100.0% | 000.0         |
| P2.0.20                                                                        | Maximum Input of Curve 2                                | P2.0.18~10.00V | 10.00         |
| P2.0.21                                                                        | Corresponding Reference for Maximum Input<br>of Curve 2 | -100.0%~100.0% | 100.0         |
| P2.0.22 ACI Filtering Time                                                     |                                                         | 00.00s~10.00s  | 00.10         |

Please refer to the description of curve 1 for the function and application method of curve 2.

| Function code | Function name                             | Setting scope     | Factory value |
|---------------|-------------------------------------------|-------------------|---------------|
| P2.0.23       | PULS Min. input                           | 0.00kHz~P2.0.25   | 000.00        |
| P2.0.24       | Corresponding Setting of PULSE Min. input | -100.0%~100.0%    | 000.0         |
| P2.0.25       | PULS Max. input                           | P2.0.23~100.00kHz | 050.00        |
| P2.0.26       | Corresponding Setting of PULSE Max. input | -100.0%~100.0%    | 100.0         |
| P2.0.27       | PULS Filtering Time                       | 00.00s~10.00s     | 00.10         |

The above function codes are used to set the relation between PULS frequency and corresponding reference value, belonging to linear relation.

When the input impulse frequency is more than the setting "PULS Max. input" (P2.0.25), the impulse frequency will be calculated according to "PULS Max. input"; in a similar way, when the input impulse frequency is less than the setting "PULS Min. input" (P2.0.23), the impulse frequency will be calculated according to "PULS Min. input".

The PULS filtering time is used to set the software filtering time input by PULS frequency when the impulse is prone to be interfered on the site, please increase the filtering time to stabilize the impulse frequency, however, the longer the filtering time is, the slower the response speed of impulse frequency detection is, and the actual application shall be considered for setting.

Description: When the PULS frequency input is corresponding to frequency, the reference value will be the percentage corresponding to the highest frequency.

When the PULS frequency input is corresponding to torque, the reference value will be the percentage corresponding to digit setting torque.

When the PULS frequency input is corresponding to PID, the reference value will be the percentage corresponding to PID setting feedback value.

| Function code | Function name               | Setting scope | Factory value |
|---------------|-----------------------------|---------------|---------------|
| P2.0.29       | T1 Relay Function Selection | 0~59          | 1             |

This function code is used to select the function of T1 relay.

The Descriptions of multi-functional output terminals are as below:

| Function<br>code | Function name                         | Description                                                                                                                     |
|------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| 0                | No function                           | Multi-function output terminal provides no any function                                                                         |
| 1                | Frequency inverter is running         | When the frequency inverter is running, the output frequency (0 can be set) will be generated and the ON signal will be output. |
| 2                | Fault stop output                     | When the frequency inverter stops due to fault, the ON signal will be output.                                                   |
| 3                | Frequency level detection FDT1 output | Please refer to the description of the function codes P2.2.03 and P2.2.04.                                                      |

Chapter 6 Description of Parameters

| Setting value | Function                            | Description                                                           |
|---------------|-------------------------------------|-----------------------------------------------------------------------|
| 4             | Frequency Arrival                   | Refer to the Description for Function Code P2.2.02.                   |
| 5             | Zero-speed Running (no              | When the frequency inverter is at running state and the output        |
| 5             | output when shut down)              | frequency is 0Hz, output Signal ON.                                   |
|               |                                     | Before overload protection action of the motor, the judgment can be   |
| 6             | Motor Overload                      | made according to the threshold value of early alarm to overload,     |
| 0             | Pre-alarm                           | after exceeding the threshold value of early alarm, output Signal ON. |
|               |                                     | Refer to the Description for Function Code P1.0.25 and P1.0.26.       |
| 7             | Frequency inverter                  | The frequency inverter outputs Signal ON 10s prior to occurrence of   |
| 1             | Overload Pre-alarm                  | overload protection.                                                  |
| 8             | Reference Count Value               | When actual accounting value reaches the set value of Function        |
| 0             | Arrival                             | Code P3.1.11, output Signal ON.                                       |
| 9             | Designated Count Value              | When actual accounting value reaches the set value of Function        |
| 9             | Arrival                             | Code P3.1.12, output Signal ON.                                       |
| 10            | Length Arrival                      | When actual length (P9.0.13) reaches the length set by Function       |
| 10            | Length Arrival                      | Code P3.1.08,output Signal ON.                                        |
| 11            | PLC circulation cycle               | When simple PLC running completes a cycle, output the impulse         |
| 11            | completed                           | signal with the width of 250ms.                                       |
| 12            | Accumulative Running                | When the accumulative running time of the frequency inverter          |
| 12            | Time Arrival                        | reaches the time set by Function Code P2.2.01, output Signal ON.      |
| 13            | Frequency Limit                     | When the output frequency of the frequency inverter reaches upper     |
| 13            |                                     | frequency or lower frequency, output Signal ON.                       |
| 14            | Torque Limit                        | When the output torque of frequency inverter reaches limit value of   |
| 14            |                                     | the torque in speed control mode, output Signal ON.                   |
|               |                                     | When main circuits and control circuit power of the frequency         |
| 15            | Ready for Running                   | inverter have been stable and the inventor hasn't defected out any    |
| 15            | Ready for Running                   | fault information, and the frequency inverter is in running state,    |
|               |                                     | output Signal ON.                                                     |
| 16            | AVI>ACI                             | When the input value of AVI is greater than the input value of ACI,   |
| 10            | AVIZACI                             | output Signal ON.                                                     |
| 17            | Upper Frequency Arrival             | When the output frequency reaches upper frequency, output Signal      |
| 17            | Opper Frequency Antivar             | ON.                                                                   |
|               | Lower Frequency Arrival             | When the output frequency reaches lower frequency and the             |
| 18            | (no output when shut                | frequency inverter is in running state, output Signal ON.             |
|               | down)                               | inequency inverter is in running state, output Signal ON.             |
| 19            | Under-voltage state                 | When the frequency inverter is in under-voltage state, output Signal  |
| 19            | output                              | ON.                                                                   |
| 20            | Communication                       | Refer to the Description of Chapter 8.                                |
| 20            | Reference                           |                                                                       |
|               | AVI Output less than                | When the value of the Analog AVI Input is less than the value set by  |
| 21            | AVI Output less than<br>Lower Limit | Function Code P2.2.19 (Lower Limit of AVI Input), output Signal       |
|               |                                     | ON.                                                                   |
|               | AVI Output more than                | When the value of the Analog AVI Input is greater than the value set  |
| 22            | AVI Output more than                | by Function Code P2.2.20 (Upper Limit of AVI Input), output Signal    |
|               | Upper Limit                         | ON.                                                                   |
|               |                                     |                                                                       |

| Setting<br>value | Function                                                   | Description                                                                                                                                                                                                                                |
|------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 23               | Zero-speed Running 2 (also                                 | When the output frequency of the frequency inverter is 0Hz, output                                                                                                                                                                         |
| 23               | output when shut down)                                     | Signal ON. In Stop Mode, this signal is ON.                                                                                                                                                                                                |
| 24               | Accumulative Power-on                                      | When the accumulative power-on time of the frequency inverter                                                                                                                                                                              |
| 24               | Time Arrival                                               | reaches the time set by Function Code P2.2.00, output Signal ON.                                                                                                                                                                           |
| 25               | Frequency Level Testing<br>FDT2 Output                     | Refer to the Description of Function Code P2.2.05 and P2.2.06.                                                                                                                                                                             |
| 26               | Frequency 1 Arrival Output                                 | Refer to the Description of Function Code P2.2.07 and P2.2.08                                                                                                                                                                              |
| 27               | Frequency 2 Arrival Output                                 | Refer to the Description of Function Code P2.2.09 and P2.2.10.                                                                                                                                                                             |
| 28               | Current 1 Arrival Output                                   | Refer to the Description of Function Code P2.2.15 and P2.2.16.                                                                                                                                                                             |
| 29               | Current 2 Arrival Output                                   | Refer to the Description of Function Code P2.2.17 and P2.2.18.                                                                                                                                                                             |
| 30               | Timing Arrival Output                                      | When the timing function selection (P3.1.00=1) is valid, this running time reaches the given timing time, the frequency inverter automatically shuts down, output Signal ON in the process of shutdown and stop.                           |
| 31               | AVI Input Over-limit                                       | When the value of the analog input is greater than the value (Upper<br>Limit of AVI Input) set by Function Code P2.2.20 or less than the<br>value (Lower Limit of AVI Input) set by Function Code P2.2.19,<br>output Signal ON             |
| 32               | In Off-load                                                | In off-load state, the frequency inverter outputs Signal ON.                                                                                                                                                                               |
| 33               | In Reverse Running                                         | In reverse running state, the frequency inverter outputs Signal ON.                                                                                                                                                                        |
| 34               | Zero-current State                                         | Refer to the Description of Function Code P2.2.11 and P2.2.12.                                                                                                                                                                             |
| 35               | Module Temperature<br>Arrival                              | When the radiator temperature of the module of the frequency inverter reaches the temperature set by Function Code P2.2.21, output Signal ON.                                                                                              |
| 36               | Output Current Over-limit                                  | Refer to the Description of Function Codes P2.2.13 and P2.2.14.                                                                                                                                                                            |
| 37               | Lower Frequency Arrival<br>(also output when shut<br>down) | When the output frequency reaches lower frequency or the reference frequency is less than the lower frequency in stop state, output Signal ON.                                                                                             |
| 38               | Alarm Output                                               | When the frequency inverter fails, if the fault handling mode is<br>continuous running, output Signal ON. If the fault handling mode is<br>shutdown by speed reduction, output Signal ON in the process of<br>shutdown by speed reduction. |
| 39               | PLC Phase Completed                                        | When each phase of simple PLC is completed, output an impulse signal with the width of 200ms.                                                                                                                                              |
| 40               | Current Running Time<br>Arrival                            | When current running time of the frequency inverter exceeds the value set by Function Code P2.2.22, output Signal ON and the frequency inverter cannot shut down.                                                                          |
| 41               | Fault Output (Not Output for Under-voltage)                | When the frequency inverter fails and shuts down, output Signal ON.<br>Output Signal OFF in under-voltage state.                                                                                                                           |
| 42               | Timer 1 Timing Arrival                                     | When the time of Timer 1 reaches the time set by Function Code<br>P3.2.24, output Signal ON.                                                                                                                                               |

| Setting<br>value | Function                   | Description                                                                               |
|------------------|----------------------------|-------------------------------------------------------------------------------------------|
| 43               | Timer 2 Timing Arrival     | When the time of Timer 2 reaches the time set by Function Code P3.2.25, output Signal ON. |
|                  | Timer 1 Timing Arrival but | When the time of Timer 1 reaches the time set by Function Code                            |
| 44               | Timer 2 Timing Not         | P3.2.24 and the time of Timer 2 fails to reach the time set by Function                   |
|                  | Arrival                    | Code P3.2.25, output Signal ON.                                                           |
| 45               | User Function 1            | Reserved                                                                                  |
| 46               | User Function 2            | Reserved                                                                                  |
| 47               | User Function 3            | Reserved                                                                                  |
| 48               | User Function 4            | Reserved                                                                                  |
| 49               | User Function 5            | Reserved                                                                                  |
|                  | Synchronization            |                                                                                           |
| 50               | Intermediate Relay M1      | Have the same action with M1                                                              |
|                  | Synchronization            |                                                                                           |
| 51               | Intermediate Relay M2      | Have the same action with M2                                                              |
|                  | Synchronization            |                                                                                           |
| 52               | Intermediate Relay M3      | Have the same action with M3                                                              |
|                  | Synchronization            |                                                                                           |
| 53               | Intermediate Relay M4      | Have the same action with M4                                                              |
|                  | Synchronization            |                                                                                           |
| 54               | Intermediate Relay M5      | Have the same action with M5                                                              |
| 55               | Distance over Zero         | When actual distance (P9.0.30) is greater than 0, output Signal ON.                       |
|                  | Distance Set value 1       | When actual distance (P9.0.30) reaches the distance set by Function                       |
| 56               | Arrival                    | Code P3.1.13, output Signal ON.                                                           |
|                  | Distance Set value 2       | When actual distance (P9.0.30) reaches the distance set by Function                       |
| 57               | Arrival                    | Code P3.1.14, output Signal ON.                                                           |
| 50               | Operation Result 2 greater | When the result 2 of the operation module is greater than 0, output                       |
| 58               | than 0                     | Signal ON.                                                                                |
| 50               | Operation Result 4 greater | When the result 4 of the operation module is greater than 0, output                       |
| 59               | than 0                     | Signal ON.                                                                                |

| Function code | Function name               | Setting scope | Factory value |
|---------------|-----------------------------|---------------|---------------|
| P2.0.33       | Analog Output FM1 Reference | 0~20          | 00            |

Function code P2.0.33 Defines the function of the analog output FM1.

Analog output FM1 output range of 0V to 10V voltage signal or 0mA to 20mA current signal. The deviation between actual output voltage and target output voltage of the analog output terminal can be adjusted through Function Codes P8.1.13~P8.1.20.

| Setting<br>value | Function                          | Impulse or analog outputs $0.0\% \sim 100.0\%$ corresponding function             |
|------------------|-----------------------------------|-----------------------------------------------------------------------------------|
| 0                | Running Frequency                 | 0~Max. Output Frequency                                                           |
| 1                | Reference Frequency               | 0~Max. Output Frequency                                                           |
| 2                | Output Current                    | 0~2 Times of Rated Current of the Motor                                           |
| 3                | Output Torque                     | 0~2 Times of Rated Torque of the Motor                                            |
| 4                | Output Power                      | 0~2 Times of Rated Power                                                          |
| 5                | Output Voltage                    | 0~1.2 Times of Rated Voltage of the Frequency inverter                            |
| 6                | PULSE Impulse Input               | 0.01kHz~100.00kHz                                                                 |
| 7                | AVI Voltage                       | 0V~10V                                                                            |
| 8                | ACI Voltage                       | 0 V to 10V corresponds to the input current of 0/4 ma to 20mA                     |
| 9                | Keyboard Potentiometer<br>Voltage | 0V~10V                                                                            |
| 10               | Actual Length Value               | 0~Reference Length Value (Set value of Function Code P3.1.08)                     |
| 11               | Actual Counting Value             | 0~Designated Count Value (Set value of Function Code P3.1.12)                     |
| 12               | Communication Reference           | Refer to the Description of Chapter VIII.                                         |
| 13               | Motor Speed                       | 0~Corresponding Speed of Max. Output Frequency                                    |
| 14               | Output Current                    | 0.0A~1000.0A                                                                      |
| 15               | Bus Voltage                       | 0.0V~1000.0V                                                                      |
| 16               | Output Torque                     | -2 Times of Rated Torque of the Motor $\sim$ 2 Times of Rated Torque of the Motor |
| 17               | Operation Result 1                | -1000~1000                                                                        |
| 18               | Operation Result 2                | 0~1000                                                                            |
| 19               | Operation Result 3                | -1000~1000                                                                        |
| 20               | Operation Result 4                | 0~1000                                                                            |

The calibration relationship between the output range of analog quantities and corresponding functions is shown in the following table:

| Function code | Function name            | Setting scope  | Factory value |
|---------------|--------------------------|----------------|---------------|
| P2.0.36       | Analog FM1 Output Offset | -100.0%~100.0% | 000.0         |
| P2.0.37       | Analog FM1 Output Gains  | -10.00~10.00   | 01.00         |

The above function codes are generally used for correcting zero drift of analog output and deviation of output amplitude, but also can be used to customize the required analog output curve.

Actual Analog Output= Standard Analog Output \* Analog Output Gain+ Analog Output Offset

Standard Analog Output refers to the output analog value without offset and gain correction. Namely, voltage output is  $0 \sim 10V$  and current output is  $0 \sim 20mA$ 

The analog output bias is percentage of the Max. voltage 10 V or current 20mA of standard analog output

For example: if output current signal is  $4 \sim 20$ mA, analog output bias is set to 20% and analog output gain is set to 0.8.

| Group | P2.1 | Expansion | Group |
|-------|------|-----------|-------|
|-------|------|-----------|-------|

| Function<br>code | Function name              | Setting scope           | Factory value |
|------------------|----------------------------|-------------------------|---------------|
|                  |                            | 0: Active High Level    |               |
|                  |                            | 1: Active Low Level     |               |
|                  |                            | Ones: DI1               |               |
| P2.1.00          | Valid Model Selection 1 of | Tens: DI2               | 0             |
|                  | Terminal DI                | Hundreds: DI3           |               |
|                  |                            | Thousands: DI4          |               |
|                  |                            | Ten Thousands: Reserved |               |

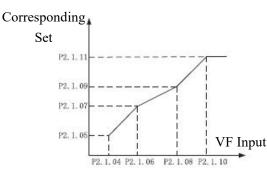
Be used for setting valid state mode of digital input terminal.

When selecting active high level, it is not valid until corresponding Terminal DI is connected, and the disconnection is invalid.

When selecting active low level, it is not valid until corresponding Terminal DI is connected, and the disconnection is invalid.

| Function code | Function name                | Setting scope                                                                                                                                                                                                                                                                                                                                                                           | Factory value |
|---------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| P2.1.02       | Analog Input Curve Selection | Ones: Curve selected by AVI<br>Tens: Curve selected by ACI<br>1: Curve 1 2: Curve 2<br>3: Curve 3 4: Curve 4<br>Hundreds: Input resolution of AVI<br>Thousands: Input resolution of ACI<br>Ten Thousands: Input resolution of<br>keyboard potentiometer<br>0: 0.01Hz 1: 0.02 Hz<br>2:0.05 Hz 3:0.10 Hz<br>4: 0.20Hz 5: 0.50Hz<br>6: 01.00 Hz (Keyboard Potentiometer is<br>ineffective) | 31121         |

The Ones and Tens of this function code are respectively used to select the reference curves corresponding to analog input AVI and ACI. 2-way analog input can respectively select random one of 4 curves. The Curve 1 and Curve 2 belong to linear relationship, refer to the setting of P2.0.13~P2.0.22 for detailed contents; the Curve 3 and Curve 4 belong to the broken line relationship with two inflection points, refer to the setting of P2.1.04~P2.1.19 for detailed contents. Hundreds, thousands, ten thousands are used to select AVI, ACI, input resolution of keyboard potentiometer, also known as min fluctuation value.


| Function<br>code | Function name                                   | Setting scope                                                                                                           | Factory value |
|------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------|
| P2.1.03          | Selection for Curve less than Min.<br>Reference | Ones: AVI less than Min. Input<br>Tens: ACI less than Min. Input<br>0: Corresponding Min. Input<br>Reference<br>1: 0.0% | H.00          |

This function code is used to set how to determine the corresponding reference of the analog when the analog input is less than the given "Min. Input".

The Ones and Tens of this function code respectively correspond to AVI and ACI. If it is 0, when AVI、 ACI input is lower than" Min. Input", this corresponding reference of this analog is "Corresponding reference of Min. Input" (P2.0.14, P2.0.19, P2.1.05, P2.1.13) of the selected curve. If it is 1, when AVI、 ACI input is lower than "Min. Input", this corresponding reference of this analog is 0.0%.

| Function<br>code | Function name                                                   | Setting scope   | Factory value |
|------------------|-----------------------------------------------------------------|-----------------|---------------|
| P2.1.04          | Min. Input of Curve 3                                           | 00.00V~P2.1.06  | 00.00         |
| P2.1.05          | Corresponding reference for Min. Input of Curve 3               | -100.0%~100.0%  | 000.0         |
| P2.1.06          | Curve 3 Inflection Point 1 Input                                | P2.1.04~P2.1.08 | 03.00         |
| P2.1.07          | Corresponding reference for Curve 3 Inflection Point<br>1 Input | -100.0%~100.0%  | 030.00        |
| P2.1.08          | Curve 3 Inflection Point 2 Input                                | P2.1.06~P2.1.10 | 06.00         |
| P2.1.09          | Corresponding reference for Curve 3 Inflection Point<br>2 Input | -100.0%~100.0%  | 060.0         |
| P2.1.10          | Max. Input of Curve 3                                           | P2.1.08~10.00V  | 10.00         |
| P2.1.11          | Corresponding reference for Max. Input of Curve 3               | -100.0%~100.0%  | 100.0         |

The functions and use methods of Curve 3 is roughly the same with Curve 1 and Curve 2 (refer to the Description of Curve 1), the difference is that Curve 1 and Curve 2 are linear relationship without inflection point, but curve 3 is broken line relationship with two inflection point in the middle, refer to the Description in the figure below:



| Function<br>code | Function name                                                   | Setting scope   | Factory value |
|------------------|-----------------------------------------------------------------|-----------------|---------------|
| P2.1.12          | Min. Input of Curve 4                                           | 00.00V~P2.1.14  | 00.00         |
| P2.1.13          | Corresponding reference for Min. Input of Curve 4               | -100.0%~100.0%  | -100.0        |
| P2.1.14          | Curve 4 Inflection Point 1 Input                                | P2.1.12~P2.1.16 | 03.00         |
| P2.1.15          | Corresponding reference for Curve 4 Inflection<br>Point 1 Input | -100.0%~100.0%  | -030.00       |
| P2.1.16          | Curve 4 Inflection Point 2 Input                                | P2.1.14~P2.1.18 | 06.00         |
| P2.1.17          | Corresponding reference for Curve 4 Inflection<br>Point 2 Input | -100.0%~100.0%  | 030.0         |
| P2.1.18          | Max. Input of Curve 4                                           | P2.1.16~10.00V  | 10.00         |
| P2.1.19          | Corresponding reference for Max. Input of Curve 4               | -100.0%~100.0%  | 100.0         |

As for the functions and use methods of Curve 4, refer to the Description of Curve 3.

| Function code | Function name                     | Setting scope     | Factory value |
|---------------|-----------------------------------|-------------------|---------------|
| D2 1 22       | P2.1.22   Valid State of T1 relav | 0: Positive Logic | 0             |
| 1 2.1.22      |                                   | 1: Negative Logic | 0             |

This function code defines the output logic of T1 relay.

#### 0: Positive Logic

When the output signal is valid, T1 relay will be connected. When the output signal is invalid, T1 relay will be disconnected.

#### 1: Negative Logic

When the output signal is invalid, T1 relay will be connected. When the output signal is valid, T1 relay will be disconnected.

| Function<br>code | Function name                             | Setting scope                                                          | Factory value |
|------------------|-------------------------------------------|------------------------------------------------------------------------|---------------|
| P2.1.23          | AVI Terminal Function as Digital<br>Input | 00: Used as Normal Analog<br>01~59: Digital Input Terminal<br>Function | 00            |
| P2.1.24          | ACI Terminal Function as Digital<br>Input | 00: Used as Normal Analog<br>01~59: Digital Input Terminal<br>Function | 00            |

This group of function code is used to set the function when the analog input terminal AVI, ACI is used as the digital input terminal DI. When AVI, ACI is used as DI and AVI, ACI is connected with 10V, the AVI, ACI Terminal State will be high level, when AVI, ACI is disconnected with 10V, AVI, ACI Terminal State will be low level. Refer to the setting of function codes P2.0.00~P2.0.03 for detailed function description.

| Function code | Function name                | Setting scope        | Factory value |
|---------------|------------------------------|----------------------|---------------|
|               |                              | 0: Active High Level |               |
| D2 1 25       | Effective state selection of | 1: Active Low Level  | 0             |
| P2.1.25       | analog input                 | Ones: AVI            | 0             |
|               |                              | Tens: ACI            |               |

This function code is used to confirm that the analog input terminal AVI、 ACI is used as digital input terminal DI, AVI、 ACI Terminal State is active high level or active low level. Ones and Tens respectively represent AVI and ACI.

Active High Level: the connection of AVI, ACI and 10V is valid, but disconnection is invalid.

Active Low Level: the connection of AVI, ACI and 10V is valid, but disconnection is invalid.

| Function code | Function name       | Setting scope | Factory value |
|---------------|---------------------|---------------|---------------|
| P2.1.26       | DI1 effective Delay | 0.0s~3600.0s  | 0000.0        |
| P2.1.27       | DI2 effective Delay | 0.0s~3600.0s  | 0000.0        |
| P2.1.28       | DI3 effective Delay | 0.0s~3600.0s  | 0000.0        |

The above function code is used to set the delay time when DI1, DI2 and DI3 signals are effective until the signal has an effect on the frequency converter.

| Function code | Function name | Setting scope | Factory value |
|---------------|---------------|---------------|---------------|
| P2.1.30       | T1 Delay      | 0.0s~3600.0s  | 0000.0        |

The above function codes are used for the time from setting frequency inverter T1 signal to outputting T1 signal.

| Function code | Function name         | Setting scope | Factory value |
|---------------|-----------------------|---------------|---------------|
| P2.1.32       | DI1 ineffective delay | 0.0s~3600.0s  | 0000.0        |
| P2.1.33       | DI2 ineffective delay | 0.0s~3600.0s  | 0000.0        |
| P2.1.34       | DI3 ineffective delay | 0.0s~3600.0s  | 0000.0        |

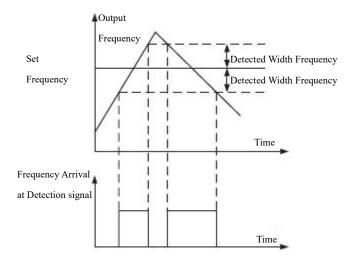
The above function code is used to set the delay time when DI1, DI2 and DI3 signals are invalid.

#### **Group P2.2 - Auxiliary Group**

| Function code | Function name                                | Setting scope | Factory value |
|---------------|----------------------------------------------|---------------|---------------|
| P2.2.00       | Accumulative Power-on Arrival Time Reference | 0h~65000h     | 00000         |

This function code is used to set accumulative power-on time of the frequency inverter from the date of leaving the factory. When actually accumulative power-on time reaches the value set by Function Code P2.2.00, the multi-functional output terminals of the frequency inverter output Signal ON. The corresponding function of multi-functional output terminals is accumulative power-on time arrival (24). The frequency inverter gives an alarm of Fault Err23. If the setting is 0, the accumulative power-on time is not limited. Actually accumulative power-on time can be viewed through Function Code P5.1.01.

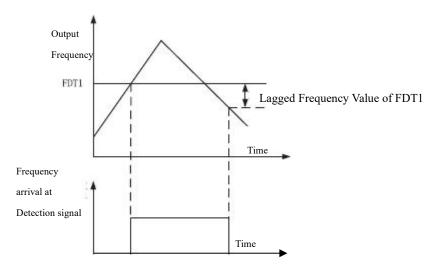
Note: Only when actually accumulative power-on time (P5.1.01) is less than the value set by Function Code P2.2.00, the frequency inverter can enter into normal running, if the setting is 0, the accumulative power-on time is not limited.


| Function code | Function name                               | Setting scope | Factory value |
|---------------|---------------------------------------------|---------------|---------------|
| P2.2.01       | Accumulative Running Arrival Time Reference | 0h~65000h     | 00000         |

This function code is used to set accumulative running time of the frequency inverter. When actually accumulative running time reaches the value set by Function Code P2.2.01, the multi-functional output terminals of the frequency inverter output Signal ON and the frequency inverter shuts down automatically. The corresponding function of multi-functional output terminals is accumulative running time arrival (12). The frequency inverter gives an alarm of Fault Err24. Actually accumulative running time can be viewed through Function Code P5.1.00.

Note: Only when actually accumulative running time (P5.1.00) is less than the value set by Function Code P2.2.01, the frequency inverter can enter into normal running, if the setting is 0, the accumulative running time is not limited.

| Function code | Function name                                      | Setting scope | Factory value |
|---------------|----------------------------------------------------|---------------|---------------|
| P2.2.02       | Detected Reference frequency Width upon<br>Arrival | 000.0%~100.0% | 000.0         |


When the running frequency of frequency inverter is within positive and negative frequency with detected width of the reference frequency, the multi-functional output terminals of the frequency inverter output Signal ON. The reference value of this function code is the percentage relative to the high reference frequency. Corresponding function of multi-functional output terminals is frequency arrival (4), refer to the Description of the figure below:

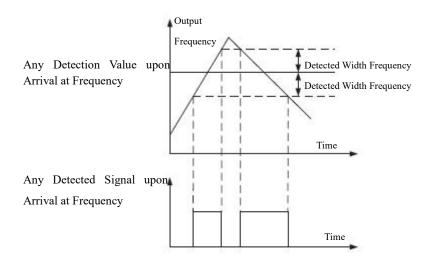


Detected Width Frequency= Detected Reference frequency Width upon Arrival (P2.2.02) \* Highest Frequency (P0.0.07)

| Function code | Function name            | Setting scope              | Factory value |
|---------------|--------------------------|----------------------------|---------------|
| P2.2.03       | Frequency Detection FDT1 | 000.00Hz~Highest frequency | 050.00        |
| P2.2.04       | FDT1 Lagged Value        | 000.0%~100.0%              | 005.0         |

When the output frequency of the frequency inverter exceeds one value, the multi-functional output terminals of the frequency inverter output Signal ON, this value is called as Detected Frequency FDT1. When the output frequency of the frequency inverter is lower than a certain value of Detected Frequency FDT1, the multi-functional output terminals of the frequency inverter output Signal OFF, this value is called as Lagged FDT1 Frequency Value. Corresponding function of multi-functional output terminals is Detected FDT1 Output of Frequency Level (3), refer to the Description of the figure below:




FDT1 lag frequency value = frequency detection FDT1 (P2.2.03) ×FDT1 lag value (P2.2.04)

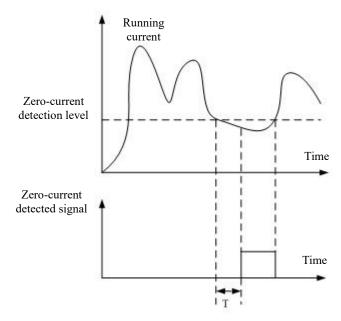
| Function code | Function name            | Setting scope              | Factory value |
|---------------|--------------------------|----------------------------|---------------|
| P2.2.05       | Frequency Detection FDT2 | 000.00Hz~Highest frequency | 050.00        |
| P2.2.06       | FDT2 Lagged Value        | 000.0%~100.0%              | 005.0         |

FDT2 has the same function with FDT1, refer to the Description for FDT1 (P2.2.03 and P2.2.04) for more details. Corresponding function of multi-functional output terminals is Frequency Level Detection FDT2 (25).

| Function code | Function name                                        | Setting scope                 | Factory value |
|---------------|------------------------------------------------------|-------------------------------|---------------|
| P2.2.07       | Detected Frequency Value 1 upon Arbitrary<br>Arrival | 000.00Hz~Highest<br>frequency | 050.00        |
| P2.2.08       | Detected Frequency 1 Width upon Arbitrary<br>Arrival | 000.0%~100.0%                 | 000.0         |

When the running frequency of frequency inverter is within the positive & negative detected width frequency of arbitrary arrival frequency detection value 1, the frequency inverter output terminal will output ON signal. When the running frequency of frequency inverter is not within the positive & negative detected width frequency of arbitrary arrival frequency detection value 1, the frequency inverter output terminal will output OFF signal. The corresponding multi-function output terminal function is the frequency 1 arrival output (26) as Figure below:

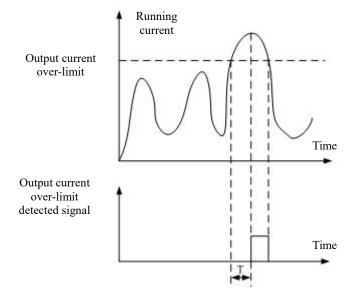



Detected Width Frequency = Any Detected Width upon Arrival at Frequency 1 (P2.2.08) \* Highest Frequency (P0.0.07)

| Function code | Function name                                        | Setting scope              | Factory value |
|---------------|------------------------------------------------------|----------------------------|---------------|
| P2.2.09       | Detected Frequency Value 2 upon Arbitrary<br>Arrival | 000.00Hz~Highest Frequency | 050.00        |
| P2.2.10       | Detected Frequency 2 Width upon Arbitrary<br>Arrival | 000.0%~100.0%              | 000.0         |

The above function codes have the same function with Function Codes P2.2.07 and P2.2.08, refer to the Description of P2.2.07 and P2.2.08 for more details. Corresponding function of the multi-functional output terminals is Frequency 2 Arrival Output (27).

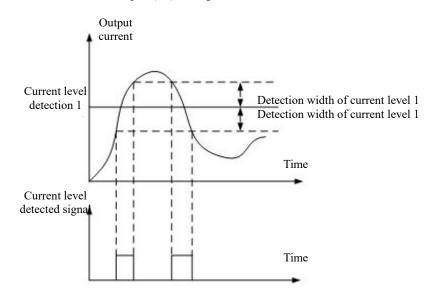
| Function code | Function name          | Setting scope                                  | Factory value |  |
|---------------|------------------------|------------------------------------------------|---------------|--|
| D2 2 11       | Zero Current Detection | 000.0%~300.0%                                  | 005.0         |  |
| P2.2.11       | Level                  | (100.0% corresponds to rated current of motor) | 005.0         |  |
| D2 2 12       | Delay Time for Zero    | 000.01a 600.00a                                | 000.10        |  |
| P2.2.12       | Current Detection      | 000.01s~600.00s                                | 000.10        |  |


When the running current of the frequency inverter is less than or equal to zero-current detection level and the duration exceeds the delay time of zero-current detection, the multi-functional output terminals of the frequency inverter output Signal ON, once the running current resets to the current detection level larger than zero, the multi-functional output terminals of the frequency inverter output Signal OFF. Corresponding function of the multi-functional output terminals is zero-current state (34), refer to the Description of the figure below:



Current Detection Delay Time when T at 0

| Function code | Function name                           | Setting scope        | Factory value |
|---------------|-----------------------------------------|----------------------|---------------|
| P2.2.13       | Output Current Over-limit Value         | 000.0 (No Detection) | 200.0         |
| 12.2.15       | P2.2.15 Output Current Over-minit value | 000.1%~300.0%        | 200.0         |
| P2.2.14       | Delay Time for Current Over-limit       |                      | 000.00        |
| P2.2.14       | Detection                               | 000.00s~600.00s      | 000.00        |


When the running current of the frequency inverter is greater than the value set by Function Code P2.2.13 and the duration exceeds the value set by Function Code P2.2.14, the multi-functional output terminals of the frequency inverter output Signal ON, once the running current resets to the value less than and equal to over-limit of output current, the multi-functional output terminals of the frequency inverter output Signal OFF. Corresponding function of the multi-functional output terminals is output current over-limit (36), refer to the Description of the figure below:



The output current over-limit is the percentage of rated current of the motor. T refers to the delay time of detecting out current over-limit.

| Function code | Function name                      | Setting scope | Factory value |
|---------------|------------------------------------|---------------|---------------|
| P2.2.15       | Current Level Detection 1          | 000.0%~300.0% | 100.0         |
| P2.2.16       | Detection Width of Current Level 1 | 000.0%~300.0% | 000.0         |

When the running current of the frequency inverter is within the positive & negative detected width of current level detection 1, the frequency inverter multi-functional output terminal will output ON signal. When the running current of frequency inverter is not within the positive & negative detected width of current level detection 1, the frequency inverter multi-functional output terminal will output OFF signal. The reference value of above function code is the percentage corresponding to the rated current of motor. The corresponding multi-function output terminal function is the Current 1 Arrival Output (28) as Figure below:



| Function code | Function name                      | Setting scope | Factory value |
|---------------|------------------------------------|---------------|---------------|
| P2.2.17       | Current Level Detection 2          | 000.0%~300.0% | 100.0         |
| P2.2.18       | Detection Width of Current Level 2 | 000.0%~300.0% | 000.0         |

The above function codes have the same functions with Function Codes P2.2.15 and P2.2.16, and refer to the Description of Function Codes P2.2.15 and P2.2.16 for more details. Corresponding function of the multi-functional output terminals is Current 2 Arrival Output (29).

| Function code | Function name         | Setting scope  | Factory value |
|---------------|-----------------------|----------------|---------------|
| P2.2.19       | AVI Input Lower Limit | 00.00V~P2.2.20 | 03.10         |
| P2.2.20       | AVI Input Upper Limit | P2.2.19~11.00V | 06.80         |

When the input value of Analog AVI is less than the value set by the Function Code P2.2.19, the frequency inverter multi-functional output terminal will output ON signal, and the corresponding multi-functional output terminal function is that AVI input is less than lower limit (21) or AVI input is over-limit (31)

When the input value of Analog AVI is more than the value set by the Function Code P2.2.20, the frequency inverter multi-functional output terminal will output ON signal, and the corresponding multi-functional output terminal function is that AVI input is more than upper limit (22) or AVI input is over-limit (31).

| Function code | Function name                       | Setting scope | Factory value |  |
|---------------|-------------------------------------|---------------|---------------|--|
| P2.2.21       | Model Temperature Arrival Reference | 000°C~100°C   | 075           |  |

The module temperature of the frequency inverter reaches the value set by Function Code P2.2.21, the multi-functional output terminals of the frequency inverter output Signal ON. Corresponding function of the multi-functional output terminals is Module Temperature Arrival (35). Actual module temperature can be viewed through Function Code P5.1.03.

| Function co | de Function name        | Setting scope                  | Factory value |
|-------------|-------------------------|--------------------------------|---------------|
| P2.2.22     | Current Running Arrival | Time Reference 0000.0~6500.0mi | n 0000.0      |

The frequency inverter needs to restart timing for every start, when reaching the value set by Function Code P2.2.22, the frequency inverter continues to run and the multi-functional output terminals of the frequency inverter output Signal ON. Corresponding function of multi-functional output terminals is Current Running Time Arrival (40). If the set is 0, current running time is not limited. Actual time of current running can be viewed through Function Code P9.0.23 (when the frequency inverter shuts down, the display value of P9.0.23 automatically resets to 0).

#### 6.4 Group P3 - Programmable Function Group P3.0 - Basic Group

# Function codeFunction nameSetting scopeFactory valueP3.0.00Simple PLC Running Mode0: End of Single Running and Save<br/>1: End of Single Running and Save<br/>Final Value0P3.0.00Simple PLC Running Mode2: Continuous Running<br/>3: Cycle N Times0

0: Stop after End of Single Cycle

After the frequency inverter completes a cycle, it'll stop according to the stop mode set by P1.0.16.

1: Keep Final Value after End of Single Running

After the frequency inverter completes a cycle, it'll run according to the final phase of reference frequency.

#### 2: Continuous Cycle

The frequency inverter continues to run until the stop command is given.

#### 3: N Times of Cycle

The frequency inverter stops automatically after cycling N times. N is set by reference value of Function Code P3.0.01.

| Function code | Function name | Setting scope | Factory value |
|---------------|---------------|---------------|---------------|
| P3.0.01       | Cycle Times N | 00000~65000   | 00000         |

This function code is used to set the times of cycle running at Function Code P3.0.00=3.

| Function code | Function name           | Setting scope                    | Factory value |
|---------------|-------------------------|----------------------------------|---------------|
|               |                         | Ones: Option of Power-off Memory |               |
|               |                         | 0: No Power-off Memory           |               |
| D2 0 02       | Option of PLC Power-off | 1: Power-off Memory              | 00            |
| P3.0.02       | Memory                  | Tens: Stop Memory Selection      | 00            |
|               |                         | 0: No Stop Memory                |               |
|               |                         | 1: Stop Memory                   |               |

PLC Power-off Memory means running phase and running frequency of PLC before memory power-off, when powering on next time, the frequency inverter continues to run from memory phase. If it is selected not to memory, every power-on needs to restart the process of PLC.

PLC Stop Memory means running phase and running frequency of PLC before memory shutdown, when running next time, the frequency inverter continues to run from memory phase. If it is selected not to memory, every start needs to restart the process of PLC.

In addition, PLC recycling times can be realized memorizing by selecting this function.

| Function code | Function name         | Setting scope   | Factory value |
|---------------|-----------------------|-----------------|---------------|
| P3.0.03       | Phase Directive 0     | -100.0%~100.0%  | 000.0         |
| P3.0.04       | Phase 0 Running Time  | 0000.0s~6500.0s | 0000.0        |
| P3.0.05       | Phase Directive 1     | -100.0%~100.0%  | 000.0         |
| P3.0.06       | Phase 1 Running Time  | 0000.0s~6500.0s | 0000.0        |
| P3.0.07       | Phase Directive 2     | -100.0%~100.0%  | 000.0         |
| P3.0.08       | Phase 2 Running Time  | 0000.0s~6500.0s | 0000.0        |
| P3.0.09       | Phase Directive 3     | -100.0%~100.0%  | 000.0         |
| P3.0.10       | Phase 3 Running Time  | 0000.0s~6500.0s | 0000.0        |
| P3.0.11       | Phase Directive 4     | -100.0%~100.0%  | 000.0         |
| P3.0.12       | Phase 4 Running Time  | 0000.0s~6500.0s | 0000.0        |
| P3.0.13       | Phase Directive 5     | -100.0%~100.0%  | 000.0         |
| P3.0.14       | Phase 5 Running Time  | 0000.0s~6500.0s | 0000.0        |
| P3.0.15       | Phase Directive 6     | -100.0%~100.0%  | 000.0         |
| P3.0.16       | Phase 6 Running Time  | 0000.0s~6500.0s | 0000.0        |
| P3.0.17       | Phase Directive 7     | -100.0%~100.0%  | 000.0         |
| P3.0.18       | Phase 7 Running Time  | 0000.0s~6500.0s | 0000.0        |
| P3.0.19       | Phase Directive 8     | -100.0%~100.0%  | 000.0         |
| P3.0.20       | Phase 8 Running Time  | 0000.0s~6500.0s | 0000.0        |
| P3.0.21       | Phase Directive 9     | -100.0%~100.0%  | 000.0         |
| P3.0.22       | Phase 9 Running Time  | 0000.0s~6500.0s | 0000.0        |
| P3.0.23       | Phase Directive 10    | -100.0%~100.0%  | 000.0         |
| P3.0.24       | Phase 10 Running Time | 0000.0s~6500.0s | 0000.0        |

| Function code | Function name         | Setting scope   | Factory value |
|---------------|-----------------------|-----------------|---------------|
| P3.0.25       | Phase Directive 11    | -100.0%~100.0%  | 000.0         |
| P3.0.26       | Phase 11 Running Time | 0000.0s~6500.0s | 0000.0        |
| P3.0.27       | Phase Directive 12    | -100.0%~100.0%  | 000.0         |
| P3.0.28       | Phase 12 Running Time | 0000.0s~6500.0s | 0000.0        |
| P3.0.29       | Phase Directive 13    | -100.0%~100.0%  | 000.0         |
| P3.0.30       | Phase 13 Running Time | 0000.0s~6500.0s | 0000.0        |
| P3.0.31       | Phase Directive 14    | -100.0%~100.0%  | 000.0         |
| P3.0.32       | Phase 14 Running Time | 0000.0s~6500.0s | 0000.0        |
| P3.0.33       | Phase Directive 15    | -100.0%~100.0%  | 000.0         |
| P3.0.34       | Phase 15 Running Time | 0000.0s~6500.0s | 0000.0        |

When the tens for each phase property of the multiplex directive is 0, the corresponding reference value of Simple PLC Running and each phase of the multiplex directive are the percentage relative to the highest frequency.

The phase running time is the duration of PLC running at the frequency of each phase (including acceleration and deceleration time and FWD and REV Dead Time).

| Function code | Function name      | Setting scope                           | Factory value |
|---------------|--------------------|-----------------------------------------|---------------|
| P3.0.35       | Phase 0 Attribute  | Ones: Acceleration & Deceleration Time  | H.000         |
| P3.0.36       | Phase 1 Attribute  | Selection (Invalid Multiplex Directive) | H.000         |
| P3.0.37       | Phase 2 Attribute  | 0: Acceleration & Deceleration Time 1   | H.000         |
| P3.0.38       | Phase 3 Attribute  | 1: Acceleration & Deceleration Time 2   | H.000         |
| P3.0.39       | Phase 4 Attribute  | 2: Acceleration & Deceleration Time 3   | H.000         |
| P3.0.40       | Phase 5 Attribute  | 3: Acceleration & Deceleration Time 4   | H.000         |
| P3.0.41       | Phase 6 Attribute  | Tens: Frequency Source Selection (Valid | H.000         |
| P3.0.42       | Phase 7 Attribute  | Multiplex Directive)                    | H.000         |
| P3.0.43       | Phase 8 Attribute  | 0: Current Phase Directive              | H.000         |
| P3.0.44       | Phase 9 Attribute  | 1: Keyboard Potentiometer               | H.000         |
| P3.0.45       | Phase 10 Attribute | 2: Keyboard Frequency Reference         | H.000         |
| P3.0.46       | Phase 11 Attribute | 3: AVI Input                            | H.000         |
| P3.0.47       | Phase 12 Attribute | 4: ACI Input                            | H.000         |
| P3.0.48       | Phase 13 Attribute | 5: PULS Reference (DI4)                 | H.000         |
| P3.0.49       | Phase 14 Attribute | 6: PID Reference                        | H.000         |
|               |                    | 7: Operation Result 1                   |               |
|               |                    | 8: Operation Result 2                   |               |
|               | Phase 15 Attribute | 9: Operation Result 3                   |               |
| P3.0.50       |                    | A: Operation Result 4                   | H.000         |
|               |                    | Hundreds unit: running direction        |               |
|               |                    | 0: Default Direction                    |               |
|               |                    | 1: Reversed Direction                   |               |

The ones of the phase property determine the acceleration and deceleration time of Simple PLC running at each phase and the tens of phase property determine the frequency source of Simple PLC Running or Multiplex Directive at each phase. The hundreds unit of phase attribute is determined by running direction of simple PLC at each phase.

| Function code | Function name                | Setting scope | Factory value |
|---------------|------------------------------|---------------|---------------|
|               |                              | 0: Second     |               |
| P3.0.51       | Simple PLC Running Time Unit | 1: Hour       | 0             |
|               |                              | 2: Minute     |               |

Refer to the unit of phase running time when the frequency inverter is at Simple PLC Running.

| Function code | Function name                | Setting scope                                                                                                                                                                                            | Factory value |
|---------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| P3.1.00       | Timing Function Selection    | 0: Ineffective<br>1: Effective (min)<br>2: Effective (h)                                                                                                                                                 | 0             |
| P3.1.01       | Fixed Running Time Selection | <ul> <li>0: Digital Reference (P3.1.02)</li> <li>1: External Terminal AVI Reference</li> <li>2: External Terminal ACI Reference</li> <li>(Analog input range corresponds to</li> <li>P3.1.02)</li> </ul> | 0             |
| P3.1.02       | Fixed Running Time           | 0000.0min/h~6500.0min/h (unit depends on P3.1.00)                                                                                                                                                        | 0000.0        |

The above function codes are used to complete the timing run function of the frequency inverter. Refer to 7.1.8 for more details (Timing Function).

| Function code | Function name                       | Setting scope                      | Factory value |
|---------------|-------------------------------------|------------------------------------|---------------|
| D2 1 02       | Wahbulating Pafaranaa Mada          | 0: Relative to Reference frequency | 0             |
| P3.1.03       | Wobbulating Reference Mode          | 1: Relative to Highest Frequency   |               |
| P3.1.04       | Wobbulating Range                   | 000.0%~100.0%                      | 000.0         |
| P3.1.05       | Kicking Range                       | 00.0%~50.0%                        | 00.0          |
| P3.1.06       | Wobbulating Cycle                   | 0000.1s~3000.0s                    | 0010.0        |
| D2 1 07       | Rise Time of Wobbulating Triangular |                                    | 050.0         |
| P3.1.07       | Wave                                | 000.1%~100.0%                      | 050.0         |

The above function codes are used for wobbulating function. Refer to 7.1.16 for more details (wobbulating function).

| Function code | Function name           | Setting scope | Factory value |
|---------------|-------------------------|---------------|---------------|
| P3.1.08       | Reference Length        | 00000m~65535m | 01000         |
| P3.1.09       | Actual Length           | 00000m~65535m | 00000         |
| P3.1.10       | Impulse Count per meter | 0000.1~6553.5 | 0100.0        |

The above function codes are used for fixed-length control. Refer to 7.1.9 for more details (fixed-length function).

| Function code | Function name          | Setting scope | Factory value |
|---------------|------------------------|---------------|---------------|
| P3.1.11       | Reference Count Value  | 00001~65535   | 01000         |
| P3.1.12       | Designated Count Value | 00001~65535   | 01000         |

The above function codes are used for counting control. Refer to 7.1.10 for more details (Counting Function).

| Function code | Function name              | Setting scope  | Factory value |
|---------------|----------------------------|----------------|---------------|
| P3.1.13       | Distance Set value 1       | -3200.0~3200.0 | 0000.0        |
| P3.1.14       | Distance Set value 2       | -3200.0~3200.0 | 0000.0        |
| P3.1.15       | Impulse Count per Distance | 000.00~600.00  | 000.00        |

The above function codes are used for distance control. Refer to 7.1.11 for more details (Distance Control Function).

| Function code | Function name                    | Setting scope                                                                                                                                                                                                                                                                                                                                                    | Factory<br>value |
|---------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| P3.2.00       | Intermediate Delay Relay Control | 0: the input of this relay is determined<br>by this Relay Control Word A<br>1: the input of this relay is determined<br>by this Relay Control Word B<br>2: the input of this relay is determined<br>by this Relay Control Word C<br>Ones: Relay 1 (M1)<br>Tens: Relay 2 (M2)<br>Hundreds: Relay 3 (M3)<br>Thousands: Relay 4 (M4)<br>Ten Thousands: Relay 5 (M5) | 00000            |

#### **P3.2 Built-in Logic PLC Function**

This function is used to set which control word determines the Intermediate Delay Relay.

When at 0, the Intermediate Delay Relay is determined by Control Word A, refer to the Description for Function Code P3.2.01.

When at 1, the Intermediate Delay Relay is determined by Control Word B, refer to the Description for Function Code P3.2.02~P3.2.06.

When at 2, the Intermediate Delay Relay is determined by thousands and hundreds of Control Word C, refer to the Description for Function Code P3.2.07~P3.2.11.

Refer to the explanation for 7.1.12 (Simple Internal Relay Programmable Function).

| Function code | Function name                     | Setting scope     | Factory value |
|---------------|-----------------------------------|-------------------|---------------|
| P3.2.01       | Intermediate Relay Control Word A | 0: Reference 0    |               |
|               |                                   | 1: Reference 1    |               |
|               |                                   | Ones: M1          |               |
|               |                                   | Tens: M2          | 00000         |
|               |                                   | Hundreds: M3      |               |
|               |                                   | Thousands: M4     |               |
|               |                                   | Ten Thousands: M5 |               |

When which digit of Function Code P3.2.00 is 0, this function Code is used to compulsorily set corresponding relay of this digit at 0 or 1. Refer to 7.1.12 for more details (Simple Internal Relay Programmable Function).

| Function code | Function name               | Setting scope              | Factory value |
|---------------|-----------------------------|----------------------------|---------------|
| P3.2.02       | Intermediate Delay Relay M1 | Ones: Control Logic        | 00000         |
|               | Control Word B              | 0: Input 1                 |               |
| P3.2.03       | Intermediate Delay Relay M2 | 1: Input 1 and NOT         | 00000         |
|               | Control Word B              | 2: Input 1 and Input 2 AND | 00000         |
| P3.2.04       | Intermediate Delay Relay M3 | 3: Input 1 and Input 2 OR  | 00000         |
|               | Control Word B              | 4: Input 1 and Input 2 XOR | 00000         |

|         |                                               | Chapter 6 Descript                   |       |
|---------|-----------------------------------------------|--------------------------------------|-------|
| P3.2.05 | Intermediate Delay Relay M4                   | 5: the valid reference of Input 1 is | 00000 |
|         | Control Word B                                | valid the valid Reference of Input 2 |       |
|         |                                               | is invalid                           |       |
|         |                                               | 6: Valid reference of Input 1 Rise   |       |
|         |                                               | Edge is valid                        |       |
|         |                                               | Valid reference of Input 2 Rise Edge |       |
|         |                                               | is invalid                           |       |
|         |                                               | 7: Reverse valid signal of Input 1   |       |
|         |                                               | Rising Edge                          |       |
|         |                                               | 8:Input 1 Rise Edge is valid and     |       |
|         |                                               | output a impulse signal with width   |       |
|         |                                               | of 200ms                             |       |
|         |                                               | 9: Input 1 Rise Edge and Input 2     | 00000 |
|         | Intermediate Delay Relay M5<br>Control Word B | AND                                  |       |
|         |                                               | Hundreds and Tens: Input 1           |       |
|         |                                               | Selection                            |       |
|         |                                               | 0~3:DI1~DI4;                         |       |
| P3.2.06 |                                               | 4~9: Reserved                        |       |
|         |                                               | 10~14:M1~M5                          |       |
|         |                                               | 15~16:AVI,ACI                        |       |
|         |                                               | 17~19:Standby                        |       |
|         |                                               | 20~79: Output Function 00~59         |       |
|         |                                               | Corresponding to Multi-functional    |       |
|         |                                               | Output Terminal                      |       |
|         |                                               | Ten Thousands: Input 2 Selection     |       |
|         |                                               | 0~3:DI1~DI4;                         |       |
|         |                                               | 4~9: Reserved                        |       |
|         |                                               | 10~14:M1~M5                          |       |
|         |                                               | 15~16:AVI,ACI                        |       |
|         |                                               | 17~19:Standby                        |       |
|         |                                               | 20~59: Output Function 00~39         |       |
|         |                                               | Corresponding to Multi-functional    |       |
|         |                                               | Output Terminal                      |       |
|         |                                               | 1                                    | L     |

When which digit of Function Code P3.2.00 is 1, the relay of this digit is controlled by the above corresponding function code. The ones of the above function codes are used to set the logic operation function of Input 1 and Input 2. The hundreds and tens are used to set the option for Input 1. Ten Thousands and Thousands are used to set the option for Input 2. The Intermediate Delay Relay M is the result from simple logic operation of Input 1 and Input 2.

M=Logic Operation (Input 1 and Input 2)

Refer to 7.1.12 for more details (Simple Internal Relay Programmable Function).

|               | · · · ·                     |                                |               |  |
|---------------|-----------------------------|--------------------------------|---------------|--|
| Function code | Function name               | Setting scope                  | Factory value |  |
| P3.2.07       | Intermediate Delay Relay M1 | Tens Ones: 00~59               | 0000          |  |
|               | Control Word C              | Output Function 00~59          | 0000          |  |
| P3.2.08       | Intermediate Delay Relay M2 | Corresponding to Digital Input | 0000          |  |
|               | Control Word C              | Terminal                       |               |  |
| P3.2.09       | Intermediate Delay Relay M3 | Thousands Hundreds: 00~59      | 0000          |  |
|               | Control Word C              | Output Function 00~59          | 0000          |  |

| P3.2.10 | Intermediate Delay Relay M4<br>Control Word C | Corresponding to Multi-functional<br>Output Terminal | 0000 |
|---------|-----------------------------------------------|------------------------------------------------------|------|
| P3.2.11 | Intermediate Delay Relay M5<br>Control Word C |                                                      | 0000 |

The Tens and Ones of the above function codes are used to set the action destination of acquiring the Intermediate Delay Relay after logic operation results, that is, action to be performed (it can correspond to any one kind of digital input functions), and the Thousands and Hundreds are used to control corresponding relay when which digit of Function Code P3.2.00 is 2 (it can correspond to any one kind of multi-functional output terminal functions). Refer to 7.1.12 for more details (Simple Internal Relay Programmable Function)

| Function code | Function name               | Setting scope | Factory value |
|---------------|-----------------------------|---------------|---------------|
| P3.2.12       | M1 Connection Delay Time    | 0.0s~3600.0s  | 0000.0        |
| P3.2.13       | M2 Connection Delay Time    | 0.0s~3600.0s  | 0000.0        |
| P3.2.14       | M3 Connection Delay Time    | 0.0s~3600.0s  | 0000.0        |
| P3.2.15       | M4 Connection Delay Time    | 0.0s~3600.0s  | 0000.0        |
| P3.2.16       | M5 Connection Delay Time    | 0.0s~3600.0s  | 0000.0        |
| P3.2.17       | M1 Disconnection Delay Time | 0.0s~3600.0s  | 0000.0        |
| P3.2.18       | M2 Disconnection Delay Time | 0.0s~3600.0s  | 0000.0        |
| P3.2.19       | M3 Disconnection Delay Time | 0.0s~3600.0s  | 0000.0        |
| P3.2.20       | M4 Disconnection Delay Time | 0.0s~3600.0s  | 0000.0        |
| P3.2.21       | M5 Disconnection Delay Time | 0.0s~3600.0s  | 0000.0        |

The above function codes are used to set the delay time of connecting or disconnecting the Intermediate Delay Relays.

| Function code | Function name                               | Setting scope     | Factory value |
|---------------|---------------------------------------------|-------------------|---------------|
|               | Valid State Option of Intermediate<br>Relay | 0: Not Negation   |               |
|               |                                             | 1: Negation       |               |
|               |                                             | Ones: M1          |               |
| P3.2.22       |                                             | Tens: M2          | 00000         |
|               |                                             | Hundreds: M3      |               |
|               |                                             | Thousands: M4     |               |
|               |                                             | Ten Thousands: M5 |               |

This function code is used to set valid state of the Intermediate Delay Relay.

If which digit is 0, it means that the relay of this digit will output the signal of acquired results.

If which digit is 1, it means that the relay of this digit will invert the signal of acquired results and output it.

| Function code | Function name               | Setting scope                                 | Factory value |
|---------------|-----------------------------|-----------------------------------------------|---------------|
|               |                             | Ones: Timing Control 1 of Timer               |               |
|               |                             | Tens: Timing Control 2 of Timer               |               |
|               |                             | 0: Timer Running                              |               |
|               |                             | 1: Controlled by Timer Input Terminal 1       |               |
|               |                             | 2: Negation Control of Timer Input Terminal 1 |               |
|               |                             | 3: Controlled by Timer Input Terminal 2       |               |
|               |                             | 4: Negation Control of Timer Input Terminal 2 |               |
| P3.2.23       | Internal Timer Control Word | Hundreds: Timer 1 Reset Control               | 00000         |
|               |                             | Thousands: Timer 2 Reset Control              |               |
|               |                             | 0: Controlled by Timer Reset Terminal 1       |               |
|               |                             | 1: Controlled by Timer Reset Terminal 2       |               |
|               |                             | Ten Thousands: Timing Unit                    |               |
|               |                             | 0: Second                                     |               |
|               |                             | 1: Minute                                     |               |
|               |                             | 2: Hour                                       |               |

The Ones and Tens of this function code is used to set the timing control of Timer 1 and Timer 2 respectively.

0: Indicate that the timer is uncontrollable and continuously counting.

1: Conduct control by Timer Input Terminal 1, when this terminal state is valid, the timer starts counting, when the terminal state is invalid, the timer stops counting and keeps current value.

2: Conduct inverse control by Timer Input Terminal 1, when this terminal state is invalid, the timer starts counting, when the terminal state is valid, the timer stops counting and keeps current value.

3~4: Refer to Description for 1 and 2.

The Hundreds and Thousands of this function code are respectively used to set reset control of Timer 1 and Timer 2.

0: Control by Timer Reset Terminal 1, when this terminal state is valid, the timing value of the timer is reset to zero.

1: Control by Timer Reset Terminal 2, when this terminal state is valid, the timing value of the timer is reset to zero.

The Ten Thousands of this function is used to set the timing unit. 0 indicates, 1 indicates second and minute and 2 indicates hour respectively.

Refer to the explanation of 7.1.13 (Internal Timer Function).

| Function code | Function name          | Setting scope | Factory value |
|---------------|------------------------|---------------|---------------|
| P3.2.24       | Timing Time of Timer 1 | 0.0s~3600.0s  | 00000         |
| P3.2.25       | Timing Time of Timer 2 | 0.0s~3600.0s  | 00000         |

The Function Codes P3.2.24 and P3.2.25 are respectively used to set the time of Timer 1 and Timer 2.

Chapter 6 Description of Parameters

| Function code | Function name                     | Setting scope                                                                                                                                                                                                                                                                                                                                                                                                                                   | Factory value |
|---------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| P3.2.26       | Operation Module Operation Module | <ul> <li>0: No Operation</li> <li>1: Add Operation</li> <li>2: Subtraction Operation</li> <li>3: Multiply Operation</li> <li>4: Division Operation</li> <li>5: Greater than Judgment</li> <li>6: Equal to Judgment</li> <li>7: Equal to or Greater than Judgment</li> <li>8: Integration</li> <li>9~F: Reserved</li> <li>Ones: Operation 1</li> <li>Tens: Operation 2</li> <li>Hundreds: Operation 3</li> <li>Thousands: Operation 4</li> </ul> | H.0000        |

The ones, tens, hundreds and thousands of this function code respectively correspond to one-way operation. Each operation can select different operation methods. Refer to the explanation of 7.1.14 for more details (Internal Operation Function).

| Function code | Function name                                | Setting scope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Factory value |
|---------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| P3.2.27       | Operation Setting<br>Coefficient<br>Property | <ul> <li>0: Operate the Setting Coefficient by multiplication without decimal</li> <li>1: Conduct setting at one decimal fraction to system by multiplication algorithm</li> <li>2: Conduct setting at two decimal fractions to system by multiplication algorithm</li> <li>3: Conduct setting at three decimal fractions to system by multiplication algorithm</li> <li>4: Conduct setting at four decimal fractions to system by multiplication algorithm</li> <li>5: Conduct setting at no decimal fraction to system by multiplication algorithm</li> <li>5: Conduct setting at no decimal fraction to system by division algorithm</li> <li>6: Conduct setting at one decimal fractions to system by division algorithm</li> <li>7: Conduct setting at two decimal fractions to system by division algorithm</li> <li>8: Conduct setting at two decimal fractions to system by division algorithm</li> <li>8: Conduct setting at three decimal fractions to system by division algorithm</li> <li>9: Conduct setting at four decimal fractions to system by division algorithm</li> <li>8: Conduct setting at four decimal fractions to system by division algorithm</li> <li>9: Conduct setting at no decimal fractions to system by division algorithm</li> <li>8: Conduct setting at no decimal fractions to system by division algorithm</li> <li>8: Conduct setting at one decimal fractions to system by division algorithm</li> <li>8: Conduct setting at two decimal fractions to system by division algorithm</li> <li>8: Conduct setting at three decimal fractions to system by division algorithm</li> <li>10: Conduct setting at three decimal fractions to system by division algorithm</li> <li>11: Conduct setting at three decimal fractions to system by division algorithm</li> <li>12: Conduct setting at four decimal fractions to system by division algorithm</li> <li>13: Conduct setting at four decimal fractions to system by division algorithm</li> <li>14: Conduct setting at four decimal fractions to system by division algorithm</li> <li>15: Conduct setting at four decimal fractions</li></ul> | H.0000        |

The scope of the operation results is not certainly equal to the setting scope of the function codes of the frequency inverter, so a setting coefficient is required to set the scope of the operation results to the setting scope of the function codes of the frequency inverter. When the setting value is  $0\sim9$ , the operation setting coefficient is a number which can be included in operation directly. When the setting value is  $A\sim E$ , the operation setting coefficient is a address number of function code and only the number in the address of function code can be included in operation. This function code is used to set the functions of the setting coefficient. The Ones, Tens, Hundreds and Thousands of this function code respectively correspond to one-way operation. Refer to the Description of 7.1.14 for more details (Internal Operation Function).

| Function code | Function name                         | Setting scope                                                                                                                                                                                                                                                                      | Factory value |
|---------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| P3.2.28       | Input A of Operation 1                | <ul> <li>Thousands, Hundreds, Tens and Ones:</li> <li>express address of Input A of Operation 1</li> <li>Ten Thousands: express input operation</li> <li>model</li> <li>0: Input is operation by unsigned number</li> <li>1: Input is operation by signed number</li> </ul>        | 00000         |
| P3.2.29       | Operation 1 input B                   | Thousand's place, Hundred's place, Ten's<br>place, Unit's place: indicating operation 1<br>input B address<br>Ten thousand's place: indicating the input<br>operation mode<br>0:Input applies operation with unsigned<br>number<br>1:Input applies operation with signed<br>number | 00000         |
| P3.2.30       | Setting Coefficient of<br>Operation 1 | 00000~65535                                                                                                                                                                                                                                                                        | 00001         |

The above function codes are used to set input address and setting coefficient of Operation 1. The Thousands, Hundreds, Tens and Ones of Function Code P3.2.28 and Function Code P3.2.29 represent the address of Input A of Operation 1 and Input B of Operation 1 respectively. The input address corresponds to all function codes, e.g. Address 0005 corresponds to Function Code P0.0.05. If the input address has no corresponding function code, the default value in the input address is 0. The ten thousands in P3.2.28 and P3.2.29 indicate the operation mode of the digital value in input address. 0 means the operation by unsigned number and 1 means the operation by signed number.

The Function Code P3.2.30 is used to set the setting coefficient of Operation 1. When the Ones unit of P3.2.27 is set to  $0 \sim 9$ , the numbers in function code P3.2.30 can be included in operation directly; when the Ones unit of P3.2.27 is set to A ~ E, only the numbers which are the address numbers of function code P3.2.30 can be included in operation, namely indirect addressing.

| Function code | Function name          | Setting scope                                                                                                                                                                                                             | Factory value |
|---------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| P3.2.31       | Input A of Operation 2 | Thousands, Hundreds, Tens and Ones:<br>express address of Input A of Operation 2<br>Ten Thousands: express input operation<br>model<br>0: Input is operation by unsigned number<br>1: Input is operation by signed number | 00000         |

| Chapter 6 Description of Parameters |                                       |                                                                                                                                                                                                                                                                    |               |
|-------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Function code                       | Function name                         | Setting scope                                                                                                                                                                                                                                                      | Factory value |
| P3.2.32                             | Input B of Operation 2                | Thousands, Hundreds, Tens and Ones:<br>express address of Input B of Operation 2<br>Ten Thousands: express input operation<br>model<br>0: Input is operation by unsigned number<br>1: Input is operation by signed number                                          | 00000         |
| P3.2.33                             | Setting Coefficient of<br>Operation 2 | 00000~65535                                                                                                                                                                                                                                                        | 00001         |
| P3.2.34                             | Input A of Operation 3                | Thousands, Hundreds, Tens and Ones:<br>express address of Input A of Operation 3<br>Ten Thousands: express input operation<br>model<br>0: Input is operation by unsigned number<br>1: Input is operation by signed number                                          | 00000         |
| P3.2.35                             | Input B of Operation 3                | Thousands, Hundreds, Tens and Ones:<br>express address of Input B of Operation 3<br>Ten Thousands: express input operation<br>model<br>0: Input is operation by unsigned number<br>1: Input is operation by signed number                                          | 00000         |
| P3.2.36                             | Setting Coefficient of<br>Operation 3 | 00000~65535                                                                                                                                                                                                                                                        | 00001         |
| P3.2.37                             | Input A of Operation 4                | <ul> <li>Thousands, Hundreds, Tens and Ones:</li> <li>express address of Input A of Operation 4</li> <li>Ten Thousands: express input operation model</li> <li>0: Input is operation by unsigned number</li> <li>1: Input is operation by signed number</li> </ul> | 00000         |
| P3.2.38                             | Input B of Operation 4                | Thousands, Hundreds, Tens and Ones:<br>express address of Input B of Operation 4<br>Ten Thousands: express input operation<br>model<br>0: Input is operation by unsigned number<br>1: Input is operation by signed number                                          | 00000         |
| P3.2.39                             | Setting Coefficient of<br>Operation 4 | 00000~65535                                                                                                                                                                                                                                                        | 00001         |

Chapter 6 Description of Parameters

The above function codes are used to set the input address and setting coefficient of Operation 2, 3, 4. Refer to the explanation of Function Codes P3.2.28~P3.2.30 for more details.

## 6.5 Group P4 PID Control and Communication Control

## **P4.0 PID Control Group**

| Function code | Function name        | Setting scope                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Factory value |
|---------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| P4.0.00       | PID Reference Source | <ul> <li>0: Digital Reference (P4.0.01)</li> <li>1: Keyboard Potentiometer Reference</li> <li>2: External Terminal AVI Reference</li> <li>3: External Terminal ACI Reference</li> <li>4: PULS Impulse Reference (DI4)</li> <li>5: Communication Reference</li> <li>6: Multiplex Directive Terminal Reference</li> <li>7: Simple PLC Reference</li> <li>8: Operation Result 1</li> <li>9: Operation Result 2</li> <li>10: Operation Result 3</li> <li>11: Operation Result 4</li> </ul> | 00            |

0: Digital Reference (P4.0.01)

PID Reference Value is determined by the value by Function Code P4.0.01.

1: Keyboard Potentiometer Reference

PID Reference Value is determined by Keyboard Potentiometer.

2: External Terminal AVI Reference

3: External Terminal ACI Reference

PID Reference Value is set by the analog input terminal. The D200 Series Frequency inverter provides 2-way analog input terminal (AVI, ACI). AVI is used for voltage ( $0V \sim 10V$ ) input, ACI is used for current ( $0/4mA \sim 20mA$ ) input. As for corresponding relation curve between the input value of AVI and ACI and PID value, the users can freely choose from four kinds of the relation curves through function code P2.1.02, in which Curve 1 and Curve 2 are linear relationship able to be set through Function Code P2.0.13~P2.0.22, and Curve 3 and Curve 4 are broken line relationship with two inflection points able to be set through Function Code P2.1.04~P2.1.19. The deviation between actual voltage and sampling voltage of the analog input terminal can be adjusted through Function Code P8.1.05~P8.1.12.

4: PULS Impulse Reference (DI4)

PID Reference Value is set by high-speed impulse frequency of digital input terminal DI4 (the terminal function is not defined). The corresponding relationship between high-speed impulse frequency and PID value can be set through Function Code P2.0.23~P2.0.26, that is, linear relationship.

5: Communication Reference

PID Reference Value is set by the upper computer through communication mode (refer to Chapter 8 for more details).

#### 6: Multiplex Directive Terminal Reference

PID Reference Value is given by different composite state of Multiplex Directive Terminal. D200 Series Frequency inverter is able to set four Multiplex Directive Terminals (Terminal Function 9~12, refer to the explanation for Multiplex Directive Terminal Function of P2.0.00~P2.0.03 for more details)

#### 7: Simple PLC Reference

PID Reference Value is given by Simple PLC Function, PID Reference of the frequency inverter can be switched among  $1\sim16$  arbitrary frequency directives, the sources, hold time and acceleration & deceleration time of each frequency directive can be set through Function Code  $3.0.03\sim$ P3.0.50.

- 8: Operation Result 1
- 9: Operation Result 2
- 10: Operation Result 3
- 11: Operation Result 4

PID Reference Value is determined by the operation results after setting calculation of the internal operation module. Refer to the Description of Function Codes P3.2.26~P3.2.39 for more details of the operation module. The operation results can be viewed through Function Codes P9.0.46~P9.0.49.

| Function code | Function name       | Setting scope | Factory value |
|---------------|---------------------|---------------|---------------|
| P4.0.01       | PID Value Reference | 000.0%~100.0% | 050.0%        |

When at Function Code P4.0.00=0, PID Reference is determined by the value set by this function code.

| Function code | Function name       | Setting scope                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Factory value |
|---------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| P4.0.02       | PID Feedback Source | <ul> <li>0: External Terminal AVI Reference</li> <li>1: External Terminal ACI Reference</li> <li>2: AVI-ACI</li> <li>3: AVI+ACI</li> <li>4: PULS Impulse Reference (DI4)</li> <li>5: Communication Reference</li> <li>6: MAX[AVI, ACI]</li> <li>7: MIN[AVI, ACI]</li> <li>8: Switch of Multiplex Directive Terminal on the above conditions</li> <li>9: Operation Result 1</li> <li>10: Operation Result 2</li> <li>11: Operation Result 3</li> <li>12: Operation Result 4</li> </ul> | 00            |

0: External Terminal AVI Reference

1: External Terminal ACI Reference

PID Feedback Value is set by the analog input terminal.

2: AVI-ACI

PID Feedback Value is set by the analog AVI-ACI input.

#### 3: AVI+ACI

PID Feedback Value is set by the analog AVI+ACI input.

4: PULS Impulse Reference

PID Reference Value is set by high-speed impulse frequency of digital input terminal DI4 (the terminal function is not defined). The corresponding relationship between high-speed impulse frequency and corresponding PID value can be set through Function Code P2.0.23~P2.0.26, that is, linear relationship.

5: Communication Reference

PID Reference Value is set by the upper computer through communication mode (refer to Chapter VIII for more details).

6: MAX[AVI, ACI] PID Feedback Source is set by maximum value between Analog AVI and ACI Input.

7: MIN[AVI, ACI] PID Feedback Source is set by minimum value between Analog AVI and ACI Input.

8: Multiplex directive terminal switches among the above among the above conditions

PID Reference Value switches among the above 8 kinds of conditions by different composite state of Multiplex Directive Terminal. D200 Series Frequency inverter is able to set four Multiplex Directive Terminals, when in use, it is to take three terminal functions (Terminal Function 9~11), refer to the table below for more details:

| Terminal 3 | Terminal 2 | Terminal 1 | Feedback channel                                  |
|------------|------------|------------|---------------------------------------------------|
| 0          | 0          | 0          | AVI (correspond to P4.0.02=0)                     |
| 0          | 0          | 1          | ACI (correspond to P4.0.02=1)                     |
| 0          | 1          | 0          | AVI–ACI (correspond to P4.0.02=2)                 |
| 0          | 1          | 1          | AVI+ACI (correspond to P4.0.02=3)                 |
| 1          | 0          | 0          | PULS Impulse reference (correspond to P4.0.02=4)  |
| 1          | 0          | 1          | Communication reference (correspond to P4.0.02=5) |
| 1          | 1          | 0          | MAX [AVI, ACI](correspond to P4.0.02=6)           |
| 1          | 1          | 1          | MIN [AVI, ACI](correspond to P4.0.02=7)           |

9: Operation Result 1

10: Operation Result 2

11: Operation Result 3

## 12: Operation Result 4

PID Reference Value is determined by the operation results after setting calculation of the internal operation module. Refer to the explanation of Function Codes P3.2.26~P3.2.39 for more details of the operation module. The operation results can be viewed through Function Codes 9.0.46~P9.0.49.

| Function code | Function name        | Setting scope                      | Factory value |
|---------------|----------------------|------------------------------------|---------------|
| P4.0.03       | PID Action Direction | 0: Direct Action 1: Reverse Action | 0             |

This function code is used to set the change conditions of the frequency with the feedback quantity.

#### 0: Direct Action

The output frequency of the frequency inverter is in proportion to its feedback quantity, when the feedback quantity is less than the given quantity, the output frequency of the frequency inverter rises to make the feedback quantity rise accordingly and final feedback quantity equal to the given quantity.

#### 1: Reverse Action

The output frequency of the frequency inverter is in inverse proportion to its feedback quantity, when the feedback quantity is greater than the given quantity, the output frequency of the frequency inverter rises to make the feedback quantity decline accordingly and final feedback quantity equal to the given quantity.

| Function code | Function name                | Setting scope | Factory value |
|---------------|------------------------------|---------------|---------------|
| P4.0.04       | PID Reference Feedback Range | 00000~65535   | 01000         |

The feedback range of PID Reference is dimensionless unit, which is the range of PID Reference showing P9.0.14 and PID Feedback showing P9.0.15. If P4.0.04 is set at 5000, when the feedback value of PID is 100.0%, PID Feedback showing P9.0.15 is 5000. PID Reference and Feedback are set based on this parameter.

| Function code | Function name          | Setting scope   | Factory value |
|---------------|------------------------|-----------------|---------------|
| P4.0.05       | Proportional Gains KP1 | 000.0~100.0     | 020.0         |
| P4.0.06       | Integral Time TI1      | 00.01s~10.00s   | 02.00         |
| P4.0.07       | Derivative Time TD1    | 00.000s~10.000s | 00.000        |

The greater the value of proportional gain KP1 is, the larger the adjustment volume is and the faster the response is, but the too large value can generate the system oscillation, the smaller the value of KP1 is, the more stable the system is and the slower the response is.

The greater the value of Integral Time TI1 is, the slower the response is and the more stable the output is, the worse the fluctuation control ability of the feedback quantity is, the smaller the value of TI1 is, the faster the response is and the greater the output fluctuation is, the too small value can generate the oscillation.

The Derivative Time TD1 can set the limit for gain provided by the derivator to ensure that a pure derivative gain can be obtained at low frequency and a constant derivative gain can be obtained at high frequency. The longer the derivative time is, the greater the adjusting strength is.

| Function code | Function name       | Setting scope | Factory value |
|---------------|---------------------|---------------|---------------|
| P4.0.08       | PID Deviation Limit | 000.0%~100.0% | 000.0         |

This function code is used to determine whether PID is adjusted to prevent unstable output frequency when the deviation between reference and feedback is small.

When the deviation between reference quantity and feedback quantity is less than the value set by P4.0.08, stop the adjustment to PID and the frequency inverter keeps stable output.

When the deviation between reference quantity and feedback quantity is greater than the value set by P4.0.08, adjust PID.

| Function code | Function name               | Setting scope | Factory value |
|---------------|-----------------------------|---------------|---------------|
| P4.0.09       | PID Feedback Filtering Time | 00.00~60.00s  | 00.00         |

This function code is used to set the software filtering time of feedback value input, when the feedback value is prone to be interfered on the site, please increase the filtering time to stabilize the feedback value of detection; however, the longer the filtering time is, the slower the response speed of feedback value detection is, and the value shall be set by considering the actual application.

| Function code | Function name          | Setting scope   | Factory value |
|---------------|------------------------|-----------------|---------------|
| P4.0.10       | Proportional Gains KP2 | 000.0~100.0     | 020.0         |
| P4.0.11       | Integral Time TI2      | 00.01s~10.00s   | 02.00         |
| P4.0.12       | Derivative Time TD2    | 00.000s~10.000s | 00.000        |

The above function codes have the same functions with Function Codes P4.0.05~P4.0.07, refer to the Description for P4.0.05~P4.0.07.

| Function code | Function name         | Setting scope               | Factory value |
|---------------|-----------------------|-----------------------------|---------------|
|               |                       | 0: No Switch                |               |
| P4.0.13       | PID Switch Conditions | 1: Switch through Terminals | 0             |
|               |                       | 2: Switch through Deviation |               |

In some occasions of special applications, better PID Parameter is required to be adopted for control under different conditions. This function code is used to set under what condition PID Parameter is required to be switched.

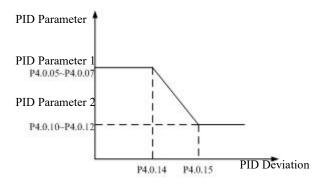
0: No Switch

Adopt PID parameters of P4.0.05~P4.0.07 by default.

1: Switch through Terminal

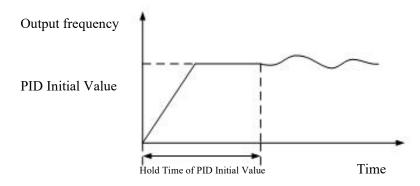
The switch is made through digital input terminal (set this terminal function at 41: switch of PID parameter). When the terminal signal is valid, adopt PID parameters of P4.0.05~P4.0.07. When the terminal signal is valid, adopt PID parameters of this group of P4.0.10~P4.0.12.

Page 114


## 2: Switch based on Deviation

The switch is made based on setting value of Function Codes P4.0.14 and P4.0.15, refer to the Description of Function Codes P4.0.14 and P4.0.15.

| Function code | Function name          | Setting scope  | Factory value |
|---------------|------------------------|----------------|---------------|
| P4.0.14       | PID Switch Deviation 1 | 000.0%~P4.0.15 | 020.0         |
| P4.0.15       | PID Switch Deviation 2 | P4.0.14~100.0% | 080.0         |


When at P4.0.13=2, it is to determine whether the switch of PID parameters needs to be done through these two function codes. The setting value of these two function codes is the percentage relative to Function Code P4.0.04 (PID Reference Feedback Range).

When the deviation between reference and feedback is less than PID Switch Deviation 1, adopt PID Parameter of P4.0.05~P4.0.07. When the deviation between reference and feedback is greater than PID Switch Deviation 2, adopt PID Parameter of P4.0.10~P4.0.12. When the deviation between reference and feedback is between PID Switch Deviation 1 and PID Switch Deviation 2, PID Parameter is the linear interpolation value of these two groups of PID Parameters, refer to the description of the figure below:



| Function code | Function name               | Setting scope  | Factory value |
|---------------|-----------------------------|----------------|---------------|
| P4.0.16       | PID Initial Value           | 000.0%~100.0%  | 000.0         |
| P4.0.17       | PID Initial Value Hold Time | 000.00~650.00s | 000.00        |

When the frequency inverter starts, first speed it up to initial value of PID at acceleration time and then keep running at initial state of PID, after the duration of time reaches the time given by P4.0.17, conduct regulation to PID. Initial Value of PID is the percentage relative to the highest frequency, refer to the description of the figure below:



| Function code | Function name                    | Setting scope                                   | Factory value |
|---------------|----------------------------------|-------------------------------------------------|---------------|
| P4.0.18       | PID Feedback Loss Detection      | 000.0%:Not judge feedback loss<br>000.1%~100.0% | 000.0         |
| P4.0.19       | PID Feedback Loss Detection Time | 00.0s~20.0s                                     | 000.0         |

These two function codes are used to judge whether the feedback signal of PID is missing.

When at P4.0.18=0.0%, no judgment is made for whether the feedback signal of PID is missing.

When at P4.0.18>0.0%, actual PID Feedback Value is less than the value given by P4.0.18 and the duration of time exceeds the time given by P4.0.19, the frequency inverter gives an alarm of Err20 Fault, it is deemed that the feedback signal of PID is missing

| Function code | Function name      | Setting scope                 | Factory value |
|---------------|--------------------|-------------------------------|---------------|
| P4.0.20       | PID Stop Operation | 0:No operation<br>1:Operation | 0             |

This function code is used to set whether PID operates when the frequency inverter is in shutdown state.

### 0: No Operation

When the frequency inverter runs, PID operates; when the frequency inverter shuts down, PID can't operate (choose this under general conditions)

### 1: Operation

No matter what the state of the frequency inverter is, running state or shutdown state, PID operates.

## **P4.1 Communication Group**

| Function code | Function name                             | Setting scope                                                                                                                                  | Factory value |
|---------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| P4.1.00       | Baud Rate                                 | 0:1200<br>1:2400<br>2:4800<br>3:9600<br>4:19200<br>5:38400<br>6:57600<br>Tens: Invalid<br>Hundreds: The upper computer<br>protocol was enabled | 3             |
| P4.1.01       | Data Format                               | 0:No parity (8-N-2)<br>1:Even parity (8-E-1)<br>2:Odd parity (8-0-1)<br>3:No parity (8-N-1)                                                    | 0             |
| P4.1.02       | Local Machine Address                     | 000: Broadcast Address<br>001~249                                                                                                              | 001           |
| P4.1.03       | Response Delay                            | 0ms~20ms                                                                                                                                       | 02            |
| P4.1.04       | Communication Timeout                     | 00.0 (Invalid)<br>00.1~60.0s                                                                                                                   | 00.0          |
| P4.1.05       | Data Transmission Format                  | 0:ASCII mode (Reserved)<br>1:RTU mode                                                                                                          | 01            |
| P4.1.06       | MODBUS communication data reply or not    | 0: Reply 1: No reply                                                                                                                           | 0             |
| P4.1.07       | Troubleshooting of<br>communication error | 0: Bypassed<br>1: Shutdown<br>2: Communication fault                                                                                           | 0             |

When the D200 Series inverter realizes the communication with other equipments through communication terminal RS-485, it is required to set the above function codes. Refer to Communication RS-485 of the D200 Page 116

Series Frequency Inverter in Chapter 8 for more details.

## **Group P4.2: Expansion Group**

| Function code | Function name                      | Setting scope                 | Factory value |
|---------------|------------------------------------|-------------------------------|---------------|
| P4.2.01       | PID reverses the cut-off frequency | $0.00 \sim$ Highest frequency | 0             |

In some PID control conditions, PID adjustment will make the converter run from forward to reverse, to achieve the effect of PID adjustment, P4.201 is used to limit the converter can be allowed to reverse the maximum frequency of operation.

| Function code | Function name             | Setting scope | Factory value |
|---------------|---------------------------|---------------|---------------|
| P4.2.02       | PID differential limiting | 0.00%~100.00% | 000.10        |

In PID regulation, the role of differential is more sensitive, it is easy to cause system oscillation, users should according to the use of the environment and control requirements, set reasonable P4.202 parameters, PID differential effect in a certain range of effective, improve the stability of the system.

| Function code | Function name             | Setting scope                    | Factory value |
|---------------|---------------------------|----------------------------------|---------------|
| P4.2.03       | PID gives the change time | $0.00 { m s}{\sim}650.00 { m s}$ | 0             |

This function code is used to set the time required for the PID given value to linearly change from 0.00% to 100.00%. According to the requirements of equipment and system control, set reasonable P4.2.03 parameters to avoid the adverse effects caused by rapid change or mutation of PID given value.

| Function code | Function name               | Setting scope                    | Factory value |
|---------------|-----------------------------|----------------------------------|---------------|
| P4.2.04       | PID feedback filtering time | $0.00 { m s}{\sim} 60.00 { m s}$ | 0             |
| P4.2.05       | PID output filtering time   | 0.00s~60.00s                     | 0             |

PID feedback filtering time: This setting can improve the anti-jamming ability of feedback and frequency output stability of frequency converter, but the fast response performance of the system is reduced.

PID output filtering time: This setting can reduce the frequency converter output mutation, but the system's fast response performance will also be reduced.

| Function code | Function name                          | Setting scope | Factory value |
|---------------|----------------------------------------|---------------|---------------|
| P4.2.06       | Two output deviations positive maximum | 0.00%~100.00% | 001.00        |

This function code is used to set the maximum deviation of output allowed at an interval of 2ms when PID adjustment is made to make the inverter in forward rotation. In order to prevent the frequency conversion in the PID adjustment output changes too fast.

| Function code | Function name                 | Setting scope | Factory value |
|---------------|-------------------------------|---------------|---------------|
| P4.2.07       | Two output deviations reverse | 0.00%~100.00% | 001.00        |
|               | maximum                       |               |               |

This function code is used to set the maximum deviation of output allowed at an interval of 2ms when PID adjustment makes the inverter in reverse. In order to prevent the frequency conversion in the PID adjustment output changes too fast.

| Function code | Function name          | Setting scope                                                                                                                                                                                  | Factory value |
|---------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| P4.2.08       | PID integral attribute | Ones: Integral separation<br>0: invalid<br>1: effective<br>Tens: Whether to stop<br>integration after the output<br>reaches the limit value<br>0: Continue to integral<br>1: Stop the integral | 0             |

Integral separation

When integral separation is effective (that is, the unit bit of P0.4.08 is 1), when the "PID integral pause" (the function given by the digital input terminal is 40) terminal is effective, the integral adjustment function of PID is suspended, but the proportional adjustment and differential adjustment function of PID is still effective.

Whether to stop the integration after output to the limit value

Whether to stop the integration after the output reaches the limit refers to whether to stop the integral adjustment function of PID when the OUTPUT of PID operation reaches the maximum or minimum value. If you choose to stop integration (that is, the ten's place of P04.28 is 1), the integral adjustment function of PID will be suspended. If continuous integration is selected (that is, the ten's place of P04.28 is 0), the integral adjustment function of PID will continue to participate in the adjustment.

## 6.6 Group P5 Keyboard Display P5.0 Basic Group

| Function code  | Function name             | Setting scope                 | Factory value |
|----------------|---------------------------|-------------------------------|---------------|
|                |                           | 0: Invalid                    |               |
| <b>D5</b> 0.00 | Keyboard JOG Key Function | 1: Forward Jogging            | 1             |
| P5.0.00        | Reference                 | 2: Reverse Jogging            | 1             |
|                |                           | 3: Forward and Reverse Switch |               |

This function code is used to set the function of Multi-functional Key JOG.

When at P5.0.00=0, the function of Key JOG is invalid

When at P5.0.00=1, the function of Key JOG is forward jogging function

When at P5.0.00=2, the function of Key JOG is reverse jogging function

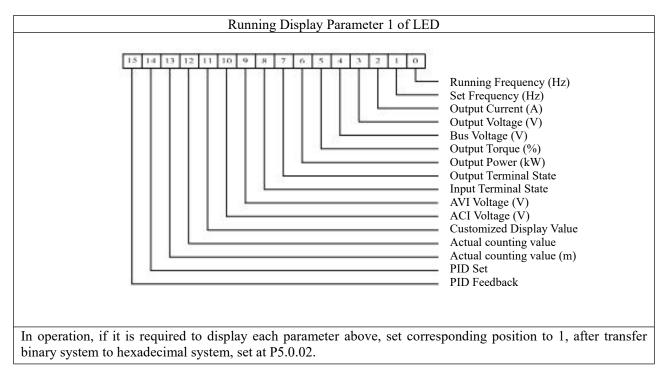
When at P5.0.00=3, the function of Key JOG is forward and reverse switch function

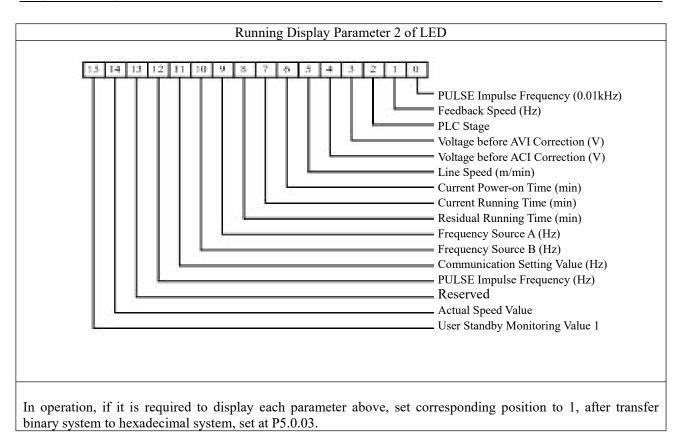
# Note: Forward Jogging Function and Reserve Jogging Function are valid under any running control mode, but the forward and reverse switch function is only valid under keyboard control mode (namely P0.0.03=0)

| Function code | Function name                   | Setting scope             | Factory value |
|---------------|---------------------------------|---------------------------|---------------|
|               |                                 | 0: Only valid in keyboard |               |
| P5.0.01       | Keyboard STOP Key Stop Function | operation mode            | 1             |
|               |                                 | 1: Valid for any mode     |               |

This function code is used to set shutdown function of Key Stop.

When at P5.0.01=0, the shutdown function is only valid under Keyboard Control Mode (namely P0.0.03=0)

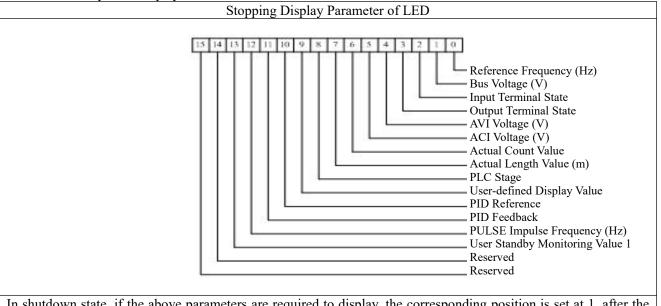

When at P5.0.01=1, the shutdown function is valid under any running control modes.


| Note: The fault reset function is always valid. |
|-------------------------------------------------|
|-------------------------------------------------|

| Function code | Function name                   | Setting scope     | Factory value |
|---------------|---------------------------------|-------------------|---------------|
| P5.0.02       | LED Running Display Parameter 1 | H.0001~H.FFFF     | H.001F        |
| P5.0.03       | LED Running Display Parameter 2 | H.0000~H.FFFF     | H.0000        |
| D5 0 04       | Automatic Time Switch of LED    | 000.0: Not switch | 000.0         |
| P5.0.04       | Running Display Parameter       | 000.1~100.0s      | 000.0         |

Function codes P5.0.02 and P5.0.03 determine the content of LED display when the inverter is in operation. The Function Codes P5.0.04 determines the length of time that displays Parameter 1 and Parameter 2. When setting this to 0, only shown the display parameter given by P5.0.02, or it is to switch between display parameter set by P5.0.02 and display parameter set by P5.0.03 based on the reference time.

The format for specific display contents is as below:






| Function code | Function name                  | Setting scope | Factory value |
|---------------|--------------------------------|---------------|---------------|
| P5.0.05       | LED Shutdown Display Parameter | H.0001~H.FFFF | H.0033        |

This function code determines the contents displayed by LED when the frequency inverter is at shutdown state.

The format for specific display contents is as below:



In shutdown state, if the above parameters are required to display, the corresponding position is set at 1, after the binary digit is converted into hexadecimal digit, it is set at P5.0.05.

| Function code | Function name                         | Setting scope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Factory value |
|---------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| P5.0.15       | Customized Display of<br>Coefficient  | 0.0001~6.5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0000        |
| P5.0.16       | User-defined Display control<br>word. | Ones unit: user-defined decimal place<br>displaying<br>0: 0-digit Decimal Point<br>1: 1-digit Decimal Point<br>2: 2-digit Decimal Point<br>3: 3-digit Decimal Point<br>Tens unit: source of user-defined display value<br>0: determined by hundreds place of<br>user-defined Display control word.<br>1: determined by set value of P5.0.15, and<br>0.0000 ~ 0.0099 corresponding to P9.0.00 ~<br>P9.0.99 of P9 Group.<br>Hundreds unit: selection of user-defined<br>displaying coefficient<br>0: user-defined displaying coefficient is<br>P5.0.15.<br>1: user-defined displaying coefficient is<br>calculation result 1<br>2: user-defined displaying coefficient is<br>calculation result 2<br>3: user-defined displaying coefficient is<br>calculation result 3<br>4: user-defined displaying coefficient is<br>calculation result 4 | 001           |

In some conditions, the users want to let the frequency inverter not display the frequency, but some values that have linear relationship with frequency. The users can adjust the corresponding relation between display value and frequency of the frequency inverter through modification to Function Code P5.0.15, P5.0.16. This display value is called user-defined display value. Additionally, if want to display any parameter of Group P9, it can be modified through P5.0.15 & P5.0.16.

The Ones unit of P5.0.16 is used to set up the decimal places of user-defined display value.

The Tens unit of P5.0.16 is used to set up the source of user-defined display value. If set up to 0, display value will be a number in relation with frequency; if set up to 1, display value will be a number in relation with P9 Group, see details as follows:

| Ten's place of P5.0.16 | Display control word         |                                                                  | Description                                                  |  |
|------------------------|------------------------------|------------------------------------------------------------------|--------------------------------------------------------------|--|
|                        |                              | 0                                                                | Displayed value=Frequency*P5.0.15                            |  |
|                        |                              | 1                                                                | Displayed value=Frequency * Calculation Result 1/ 10000      |  |
| 0                      | Hundreds unit of P5.0.16     | 2                                                                | Displayed value=Frequency * Calculation Result 2/ 10000      |  |
|                        |                              | 3                                                                | Displayed value=Frequency * Calculation Result 3/ 10000      |  |
|                        |                              | 4                                                                | Displayed value=Frequency * Calculation Result 4/ 10000      |  |
|                        |                              | The setting value $0.0000 \sim 0.0099$ of P5.0.15 corresponds to |                                                              |  |
| 1                      | P5.0.15                      | P9.0.00                                                          | $\sim$ P9.0.99 of P9 Group.                                  |  |
|                        |                              |                                                                  | e: if P5.0.15=0.0002, display value is the value of P9.0.02. |  |
| Note: places of d      | ecimal of user-defined decir | nal are no                                                       | ot considered for the above operation                        |  |

Example: The user-defined displaying coefficient of P5.0.15 is 0.5000, the user-defined display control word of P5.0.16 is 003, and the frequency is 20.00Hz, the user-defined display value shall be 2000\*0.5000 = 1.000 (display three decimal places).

If the user-defined display control word P5.0.16 is 103, the result 1 is 500, the frequency is 20.00, the customized displayed value shall be 2000\*500/10000=0.100 (display three decimal places)

If the user-defined display control word P5.0.16 is 013, P5.0.15 is 0.0002, P9.0.02=1000, the user-defined display value will be 1.000 (display three decimal places).

| Function code | Function name                                    | Setting scope                                                                                                                                                                                                                                                   | Factory value |
|---------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| P5.0.17       | Selection Display of Function<br>Parameter Group | Ones:0: Only display basic group1: Display the menus at all levelsTens:0: Don't display Group P71: Display Group P72: ReservedHundreds:0: Don't display correctionparameter group1: Display correction parametergroupThousands: ReservedTen Thousands: Reserved | 00011         |

When the function code is at P0.0.01=0, its function determine what the parameters of the function code is displayed in detail.

| Function code | Function name                | Setting scope                                                                 | Factory value |
|---------------|------------------------------|-------------------------------------------------------------------------------|---------------|
| P5.0.18       | Function Password Protection | 0: Modifiable<br>1: Non-modifiable<br>2: Allowable Modification to GP<br>Type | 0             |

This function code is used to set whether the parameters of the frequency inverter can be modified.

When at P5.0.18=0, the parameters of all function codes can be modified;

When at P5.0.18=1, the parameters of all function codes can only be viewed but not be modified, such a way can effectively prevent the parameters of the function from incorrect modification.

When at P5.0.18=2, Function Code P0.0.00 is allowed to modify.

| Function code | Function name            | Setting scope                                                                                                                                                                                                                                                                                                                                                                                                        | Factory value |
|---------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| P5.0.19       | Parameter Initialization | <ul> <li>00: No Operation</li> <li>01: Clearance of Record Information</li> <li>09 Reset to Factory Parameter, excluding motor parameter, correction group, password group</li> <li>19: Reset to Factory Parameter, excluding motor parameter, password group</li> <li>30: Users Current Parameter Backup</li> <li>60: Reset to User Backup Parameters</li> <li>100~999: Reset to User Factory Parameters</li> </ul> | 000           |

00: No Operation

01: Clearance of Record Information

Clear fault record information, accumulative running time, accumulative power-on time and accumulative power consumption of the frequency inverter

09: Reset to factory parameter, excluding motor parameter, correction group, password group

Page 122

The frequency inverter resets to factory parameter, excluding motor parameter, correction group, password group.

19: Reset to Factory Parameter, excluding motor parameter, password group

The frequency inverter resets to factory parameter, excluding motor parameter, password group.

30: Users Current Parameter Backup

Back up all current function parameters of the users to the memory, after the parameters adjustment in disorder, the user can easily reset the disordered parameters to back-up function parameters.

60: Reset to User Backup Parameters

Reset to the back-up user parameters last time, i.e. reset to the parameters that are backed up last time when P5.0.19 is set at 30.

100~999: Reset to User Factory Parameters

This function is used to reset special tailor-made factory parameter of the users. Generally, the users cannot conduct operation to this reset.

| Function code | Function name | Setting scope | Factory value |
|---------------|---------------|---------------|---------------|
| P5.0.20       | User Password | 00000~65535   | 00000         |

P5.0.20 is the user password reference, that is, any non-zero five digits, the password protection function becomes effective. When enter into the menu next time, if display "—", input correct password and then view and modify the function parameters. P5.0.20 parameter has edit enable control, only by changing P5.0.18=2 can edit P5.0.20.

If you want to cancel the password protection, only use the password to enter into system and then change P5.0.20 into 00000, the password protection function becomes invalid.

| Function code | Function name                     | Setting scope                                                                   | Factory value |
|---------------|-----------------------------------|---------------------------------------------------------------------------------|---------------|
| P5.1.00       | Accumulative Running Time         | Display accumulated running time of frequency inverter                          | 0h~65000h     |
| P5.1.01       | Accumulative Power On<br>Time     | Display accumulated electrifying<br>time of frequency inverter since<br>exworks | 0h~65000h     |
| P5.1.02       | Accumulative Power<br>Consumption | Display accumulated power<br>consumption of frequency inverter up<br>to now     | 0~65000 kW•h  |
| P5.1.03       | Module Temperature                | Display current temperature of the module                                       | 000°C~100°C   |
| P5.1.04       | Hardware Version No.              | Hardware version number                                                         | 180.00        |
| P5.1.05       | Performance Software<br>version   | Performance Software version                                                    | 000.00~655.35 |
| P5.1.06       | Program Nonstandard Label         | Version number of dedicated program                                             | 0000~99999    |
| P5.1.07       | Function Software version         | Function Software version                                                       | 000.00~655.35 |

#### Group P5.1 Expansion Group

## 6.7 Group P6 - Fault Display and Protection Control P6.0 Fault Display Group

| Function code | Function name              | Setting scope | Factory value |
|---------------|----------------------------|---------------|---------------|
| P6.0.00       | Fault Record 1 (Last Time) | 0~40          | 00            |
| P6.0.01       | Fault Record 2             | 0~40          | 00            |
| P6.0.02       | Fault Record 3             | 0~40          | 00            |

The above function codes record the fault types in the last three times, 0 indicates no fault. Concerning possible cause of each fault code and solutions, refer to related explanation of Chapter 9.

| Function code | Function name                               | Parameter description                                                                                                                                                                                                                                                             |  |
|---------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| P6.0.03       | Fault frequency 1                           | The frequency at the latest fault                                                                                                                                                                                                                                                 |  |
| P6.0.04       | Fault current 1                             | The current at the latest fault                                                                                                                                                                                                                                                   |  |
| P6.0.05       | Bus voltage 1 at fault                      | The bus voltage at the latest fault                                                                                                                                                                                                                                               |  |
|               | Input Terminal State 1                      | Input terminal state of the fault in the last time with the sequence as below:                                                                                                                                                                                                    |  |
| P6.0.06       | when at fault                               | When the input terminal is ON and its corresponding<br>binary digit is 1. OFF is 0, it is to convert binary digit into                                                                                                                                                            |  |
|               |                                             | denary digit.                                                                                                                                                                                                                                                                     |  |
| P6.0.07       | Output Terminal State<br>1 when at fault    | Output terminal state of the fault in the last time with the sequence as below:         M5       M4       M3       M2       M1       T1         When the input terminal is ON and its corresponding binary digit is 1. OFF is 0, it is to convert binary digit into denary digit. |  |
| P6.0.08       | Frequency inverter<br>State 1 when at fault | Use of manufacturer                                                                                                                                                                                                                                                               |  |
| P6.0.09       | Power-on Time 1<br>when at fault            | Current power-on time of the fault in the last time                                                                                                                                                                                                                               |  |
| P6.0.10       | Running Time 1 when at fault                | Current running time of the fault in the last time                                                                                                                                                                                                                                |  |

| Function code                                                                                                          | Function name                            | Parameter description                     |
|------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------|
| P6.0.11                                                                                                                | Fault Frequency 2                        |                                           |
| P6.0.12                                                                                                                | Fault Current2                           |                                           |
| P6.0.13                                                                                                                | Bus Voltage 2 when at Fault              |                                           |
| P6.0.14                                                                                                                | Input Terminal State 2 when at fault     | Sama as <b>D</b> ( 0.02, <b>D</b> ( 0.10) |
| P6.0.15                                                                                                                | Output Terminal State 2 when at fault    | Same as P6.0.03~P6.0.10                   |
| P6.0.16                                                                                                                | Frequency inverter State 2 when at fault |                                           |
| P6.0.17                                                                                                                | Power-on Time 2 when at fault            |                                           |
| P6.0.18                                                                                                                | Running Time 2 when at fault             |                                           |
| P6.0.19                                                                                                                | Fault Frequency 3                        |                                           |
| P6.0.20                                                                                                                | Fault Current3                           |                                           |
| P6.0.21                                                                                                                | Bus Voltage 3 when at Fault              |                                           |
| P6.0.22                                                                                                                | Input Terminal State 3 when at fault     | Some as $P(0.02, P(0.10)$                 |
| P6.0.23                                                                                                                | Output Terminal State 3 when at fault    | Same as P6.0.03~P6.0.10                   |
| P6.0.24Frequency inverter State 3 when at faultP6.0.25Power-on Time 3 when at faultP6.0.26Running Time 3 when at fault |                                          |                                           |
|                                                                                                                        |                                          |                                           |
|                                                                                                                        |                                          | ]                                         |

## **Group P6.1: Protection Control Group**

| Function code | Function name                  | Setting scope            | Factory value |
|---------------|--------------------------------|--------------------------|---------------|
| P6.1.00       | Input Default Phase Protection | 0: Prohibited 1: Allowed | 1             |

This function code is used to set whether the frequency inverter protects the input default phase.

When at P6.1.00=0, the frequency inverter can't provide protection to input default phase.

When at P6.1.00=1, if the input default phase or three-phase input imbalance is detected out, the frequency inverter gives an alarm of Fault Err11. The allowable degree of three-phase input imbalance is determined by Function Code P6.1.26, the higher the value is, the duller the response is and the higher the allowed degree of three-phase imbalance is. Attention shall be paid that if the frequency inverter cannot operate or the load of the motor is lighter, even the setting value of P6.1.26 is set smaller, it is possible that no alarm is given.

| Function code | Function name                      | Setting scope            | Factory value |
|---------------|------------------------------------|--------------------------|---------------|
| P6.1.01       | Output Default Phase<br>Protection | 0: Prohibited 1: Allowed | 1             |

This function code is used to set whether the frequency inverter protects the output default phase.

When at P6.1.01=0, the frequency inverter can't provide protection to output default phase.

When at P6.1.01=1, if the output default phase or three-phase input imbalance is detected out, the frequency inverter gives an alarm of Fault Err12.

| Chapter 6 Description of Parameters |                                              |                                                                          |               |  |
|-------------------------------------|----------------------------------------------|--------------------------------------------------------------------------|---------------|--|
| Function code                       | Function name                                | Setting scope                                                            | Factory value |  |
| P6.1.02                             | Over-voltage Stall Protection<br>Sensitivity | 000: without protection to over-voltage<br>and stalling speed<br>001~100 | 005           |  |
| P6.1.03                             | Over-voltage Stall Protection<br>Sensitivity | 115%~150%                                                                | 130           |  |

In the deceleration process of the frequency inverter, after the DC Bus Voltage exceeds over-voltage stall protection voltage point, the frequency inverter stops reducing the speed and keeps current running frequency until the bus voltage is reduced to below over-voltage stall protection voltage point and then the frequency inverter continues to reduce the speed. The setting value of Function Code P6.1.03 is the percentage relative to normal bus voltage.

The over-voltage stall protection sensitivity is used to regulate the capability of frequency inverter to suppress over-voltage during the deceleration process. The bigger the value is, the stronger the over-voltage suppression capability is. On the premise of no over-voltage, the smaller the value is, the better the effect is.

| Function code | Function name                                  | Setting scope                                                            | Factory value |
|---------------|------------------------------------------------|--------------------------------------------------------------------------|---------------|
| P6.1.04       | Over-voltage Stall<br>Protection Voltage Point | 000: without protection to over-current<br>and stalling speed<br>001~100 | 020           |
| P6.1.05       | Over-current Stall<br>Protection Sensitivity   | 100%~200%                                                                | 150           |

In the acceleration and deceleration process of the frequency inverter, after the output current exceeds the over-current stall protection current, the frequency inverter stops the acceleration and deceleration process and keeps current running frequency, and then continues to accelerate and decelerate after the decline of the output current. The setting value of the function code P6.1.05 is the percentage relative to rated current of the motor.

The Over-current Stall Protection Sensitivity is used to adjust the capability of the frequency inverter on restraining the over-current in its acceleration and deceleration process. The greater this value is, the stronger the capability of restraining the over-current is, under the precondition that no over-current fault occurs, the smaller the setting value is, and the better it is.

| Function code | Function name                                | Setting scope | Factory value |
|---------------|----------------------------------------------|---------------|---------------|
| P6.1.06       | Fault Auto Reset Number                      | 0~20          | 00            |
| P6.1.07       | Waiting Interval Time of<br>Fault Auto Reset | 0.1s~100.0s   | 001.0         |

When at P6.1.06=0, the frequency inverter keeps fault state for there is no automatic fault reset function.

When at P6.1.06>0, the frequency inverter selects the times of automatic fault reset. In case of exceeding the selected times, the frequency inverter keeps fault state.

Function P6.1.07 refers to the waiting time from fault alarm of the frequency inverter to automatic fault reset.

| Function code | Function code         Function name         Setting scope |                                                                          |               |
|---------------|-----------------------------------------------------------|--------------------------------------------------------------------------|---------------|
|               |                                                           | 0: Free Stop                                                             | Factory value |
|               |                                                           | 1: Stop by its Mode                                                      |               |
|               |                                                           | 2: Continuous Running                                                    |               |
|               | Fault Protective                                          | Ones: Motor Overload                                                     |               |
| P6.1.08       | Action Selection 1                                        | Tens: Input Default Phase                                                | 00000         |
|               | Action Selection 1                                        | Hundreds: Output Default Phase                                           |               |
|               |                                                           | Thousands: External Default                                              |               |
|               |                                                           | Ten Thousands: Communication Abnormality                                 |               |
|               |                                                           | 0: Free Stop                                                             |               |
|               |                                                           | 1: Stop by its Mode                                                      |               |
|               |                                                           |                                                                          |               |
|               | Fault Protective                                          | 2: Continuous Running<br>Ones: Motor Overload                            |               |
| P6.1.09       | Action Selection 2                                        | Tens: Feedback Loss                                                      | 00000         |
|               | Action Selection 2                                        | Hundreds: User Customized Fault 1                                        |               |
|               |                                                           | Thousands: User Customized Fault 1<br>Thousands: User Customized Fault 2 |               |
|               |                                                           |                                                                          |               |
|               |                                                           | Ten Thousands: Power-on Time Arrival                                     |               |
|               |                                                           | Ones: Running Time Arrival                                               |               |
|               |                                                           | 0: Free Stop                                                             |               |
|               |                                                           | 1: Stop by its Mode                                                      |               |
|               |                                                           | 2: Continuous Running<br>Tens: Reserved                                  |               |
|               |                                                           | Hundreds: Parameter Read-Write Abnormity                                 |               |
|               |                                                           | 0: Free Stop                                                             |               |
| D( 1 10       | Fault Protective<br>Action Selection 3                    | 1: Stop by its Mode                                                      | 00000         |
| P6.1.10       |                                                           | Thousands: Motor Overhear                                                | 00000         |
|               |                                                           |                                                                          |               |
|               |                                                           | 0: Free Stop                                                             |               |
|               |                                                           | 1: Stop by its Mode                                                      |               |
|               |                                                           | 2: Continuous Running                                                    |               |
|               |                                                           | Ten Thousands: Fault of 24V Power Supply                                 |               |
|               |                                                           | 0: Free Stop                                                             |               |
|               |                                                           | 1: Stop by its Mode                                                      |               |
|               |                                                           | 0: Free Stop                                                             |               |
|               |                                                           | 1: Stop by its Mode                                                      |               |
|               | Equit Duote stime                                         | 2: Continuous Running                                                    |               |
| P6.1.11       | Fault Protective                                          | Ones: Larger Speed Deviation                                             | 00000         |
|               | Action Selection 4                                        | Tens: Motor Over-speed                                                   |               |
|               |                                                           | Hundreds: Initial Position Error                                         |               |
|               |                                                           | Thousands: Reserved                                                      |               |
|               |                                                           | Ten Thousands: Reserved                                                  |               |

The Function Codes P6.1.08~P6.1.11 are used to set the actions of the frequency inverter after fault alarm. Each digit among the options for fault protection action corresponds to a kind of fault protection, if it is 0, it indicates that the frequency inverter stops freely; if it is 1, it indicates that the frequency inverter shuts down in stop mode after fault alarm; if it is 2, it indicates that the frequency inverter continues to run at frequency selected by Function Code P6.1.12 after fault alarm.

| Function code | Function name                                                              | Setting scope                                                                                                              | Factory value |  |
|---------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------|--|
|               |                                                                            | 0: Running at Current Frequency                                                                                            |               |  |
| P6.1.12       | P6.1.12 Continuous Running<br>P6.1.12 Frequency Selection<br>when at Fault | <ol> <li>Running at Reference frequency</li> <li>Running at Upper Frequency</li> <li>Running at Lower Frequency</li> </ol> | 0             |  |
|               |                                                                            | 4: Running at Back Frequency for<br>Abnormality                                                                            |               |  |

When the frequency inverter breaks down in the running process, if the handling mode of this fault is continuous running, the frequency inverter displays A\*\* (\*\* is its fault code), it continues to run at frequency selected by P6.1.12. If the handling mode of this fault is shut-down by reducing the speed, the frequency inverter displays A\*\* in the process of deceleration, the stop state display Err\*\*.

0: Run at Current Frequency

When the frequency inverter gives an alarm of fault, run at current frequency

1: Run at Reference Frequency

When the frequency inverter gives an alarm of fault, run at reference frequency

2: Run at Upper Frequency

When the frequency inverter gives an alarm of fault, run at upper frequency

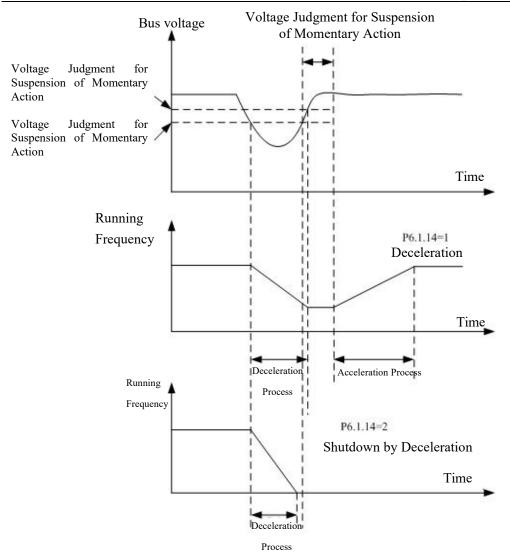
3: Run at Lower Frequency

When the frequency inverter gives an alarm of fault, run at lower frequency

4: Run at Standby Frequency for Abnormality

When the frequency inverter gives an alarm of fault, it'll run at frequency set by Function Code P6.1.13.

| Function code | Function name                    | Setting scope | Factory value |
|---------------|----------------------------------|---------------|---------------|
| P6.1.13       | Backup Frequency for Abnormality | 000.0%~100.0% | 100.0         |


When at Function Code P6.1.12=4, the setting value of this function code determines the running frequency when the frequency inverter gives an alarm of fault, which is the percentage relative to highest frequency.

| Function code | Function name                                               | Setting scope                          | Factory value |
|---------------|-------------------------------------------------------------|----------------------------------------|---------------|
| P6.1.14       | Action Selection for Momentary                              | 0: Invalid<br>1: Deceleration          | 0             |
| 10.1.14       | Interruption                                                | 2: Stop by Deceleration                | 0             |
| P6.1.15       | Judgment Time of Momentary<br>Interruption Voltage Recovery | 0.00s~100.00s                          | 000.50        |
| P6.1.16       | Voltage Judgment for Momentary<br>Interruption Action       | 60.0%~100.0% (Standard<br>Bus Voltage) | 080.0         |
| P6.1.17       | Voltage Judgment for Suspension<br>of Momentary Action      | 80.0%~100.0% (Standard<br>Bus Voltage) | 090.0         |

When at P6.1.14=0, the frequency inverter continues to run at current frequency in interrupt power-supply or sudden reduction of voltage.

When at P6.1.14=1, in case of interrupt power-supply or sudden reduction of voltage, after the bus voltage reduces to corresponding voltage of the setting value of P6.1.16 below, the frequency inverter slows down and runs; after the bus voltage resets to corresponding voltage of the setting value of P6.1.16 above and the duration of time exceeds the time set by P6.1.15, the frequency inverter runs after it is normally accelerated to reference frequency. In the process of deceleration, if the bus voltage resets to corresponding voltage of the setting value of P6.1.17, the frequency inverter stops slowing down and keeps running at current frequency.

When at P6.1.14=2, in case of interrupt power-supply or sudden reduction of voltage, after the bus voltage reduces to below corresponding voltage of the setting value of P6.1.16, the frequency inverter slows down and runs; after it slows down to 0Hz and the bus voltage hasn't recovered, the frequency inverter stops. Page 128



| Function code | Function name                 | Setting scope       | Factory value |
|---------------|-------------------------------|---------------------|---------------|
| P6.1.18       | Off-load Protection Selection | 0: Invalid 1: Valid | 0             |
| P6.1.19       | Off-load Detection Level      | 000.0%~100.0%       | 010.0         |
| P6.1.20       | Off-load Detection Time       | 00.0s~60.0s         | 01.0          |

The function code P6.1.18 is used to set whether the off-load protection function is valid. 0: Invalid 1: Valid.

If the off-load protection function is valid and the fault handling mode is continuous run or stop by speed reduction, when the output current of the frequency inverter is less than corresponding current value of off-load detection level of P6.1.19 and the duration is over off-load detection level of P6.1.20, the output frequency of the frequency inverter automatically reduces to 7% of rated frequency, the frequency inverter gives an alarm of A19 in running or decelerating state; in shutdown state, the frequency inverter gives an alarm of Err19, if the load is recovered, the frequency inverter is automatically recovered to run at reference frequency.

| Function code | Function name                          | Setting scope | Factory value |
|---------------|----------------------------------------|---------------|---------------|
| D( 1 25       | Fault Output Terminal Action Selection | 0: No Action  | 0             |
| P6.1.25       | during Fault Auto Reset Period         | 1: Action     | 0             |

This function code is used to set whether the fault output terminals act during the period of automatic fault reset.

When at P6.1.25=0, the fault output terminals cannot act during the period of automatic fault reset.

When at P6.1.25=1, the fault output terminals act during the period of automatic fault reset. After automatic fault reset, the fault output terminals also reset.

| Function code | Function name                              | Setting scope | Factory value |
|---------------|--------------------------------------------|---------------|---------------|
| P6.1.26       | Input Default Phase Protection Sensitivity | 01~10         | 05            |

This function code is used to set the sensitivity of the input phase loss protection. The smaller the value, the more sensitive it is.

## 6.8 Group P7 User Function Customization

## P7.0 Basic Group

| Function code | Function name    | Setting scope                   | Factory value |
|---------------|------------------|---------------------------------|---------------|
| P7.7.00       | User Function 0  | U0.0.01                         | U0.0.01       |
| P7.7.01       | User Function 1  | U0.0.00~UX.X.XX(exclude P7, P8) | U0.0.02       |
| P7.7.02       | User Function 2  | U0.0.00~UX.X.XX(exclude P7, P8) | U0.0.03       |
| P7.7.03       | User Function 3  | U0.0.00~UX.X.XX(exclude P7, P8) | U0.0.07       |
| P7.7.04       | User Function 4  | U0.0.00~UX.X.XX(exclude P7, P8) | U0.0.08       |
| P7.7.05       | User Function 5  | U0.0.00~UX.X.XX(exclude P7, P8) | U0.0.17       |
| P7.7.06       | User Function 6  | U0.0.00~UX.X.XX(exclude P7, P8) | U0.0.18       |
| P7.7.07       | User Function 7  | U0.0.00~UX.X.XX(exclude P7, P8) | U0.0.00       |
| P7.7.08       | User Function 8  | U0.0.00~UX.X.XX(exclude P7, P8) | U0.0.00       |
| P7.7.09       | User Function 9  | U0.0.00~UX.X.XX(exclude P7, P8) | U0.0.00       |
| P7.7.10       | User Function 10 | U0.0.00~UX.X.XX(exclude P7, P8) | U0.0.00       |
| P7.7.11       | User Function 11 | U0.0.00~UX.X.XX(exclude P7, P8) | U0.0.00       |
| P7.7.12       | User Function 12 | U0.0.00~UX.X.XX(exclude P7, P8) | U0.0.00       |
| P7.7.13       | User Function 13 | U0.0.00~UX.X.XX(exclude P7, P8) | U0.0.00       |
| P7.7.14       | User Function 14 | U0.0.00~UX.X.XX(exclude P7, P8) | U0.0.00       |
| P7.7.15       | User Function 15 | U0.0.00~UX.X.XX(exclude P7, P8) | U0.0.00       |
| P7.7.16       | User Function 16 | U0.0.00~UX.X.XX(exclude P7, P8) | U0.0.00       |
| P7.7.17       | User Function 17 | U0.0.00~UX.X.XX(exclude P7, P8) | U0.0.00       |
| P7.7.18       | User Function 18 | U0.0.00~UX.X.XX(exclude P7, P8) | U0.0.00       |
| P7.7.19       | User Function 19 | U0.0.00~UX.X.XX(exclude P7, P8) | U0.0.00       |
| P7.7.20       | User Function 20 | U0.0.00~UX.X.XX(exclude P7, P8) | U0.0.00       |
| P7.7.21       | User Function 21 | U0.0.00~UX.X.XX(exclude P7, P8) | U0.0.00       |
| P7.7.22       | User Function 22 | U0.0.00~UX.X.XX(exclude P7, P8) | U0.0.00       |
| P7.7.23       | User Function 23 | U0.0.00~UX.X.XX(exclude P7, P8) | U0.0.00       |
| P7.7.24       | User Function 24 | U0.0.00~UX.X.XX(exclude P7, P8) | U0.0.00       |
| P7.7.25       | User Function 25 | U0.0.00~UX.X.XX(exclude P7, P8) | U0.0.00       |
| P7.7.26       | User Function 26 | U0.0.00~UX.X.XX(exclude P7, P8) | U0.0.00       |
| P7.7.27       | User Function 27 | U0.0.00~UX.X.XX(exclude P7, P8) | U0.0.00       |
| P7.7.28       | User Function 28 | U0.0.00~UX.X.XX(exclude P7, P8) | U0.0.00       |
| P7.7.29       | User Function 29 | U0.0.00~UX.X.XX(exclude P7, P8) | U0.0.00       |

The function codes of this group are User Customized Parameter Group. The users can summarize the parameters of the function codes (exclude Group P7 and P8) selected from function codes for display to Group P7.0 as User Customized Parameter for easy operation as view and medication, and the User Customized Parameter Group is not more than 30.

## 6.9 Group P8 Manufacturer Function P8.0 Manufacturer Function

| Function code | Function name         | Setting scope | Factory value |
|---------------|-----------------------|---------------|---------------|
| P8.0.00       | Manufacturer Password | 00000~65535   | 00000         |

This function code is the manufacturer password entry and displays dedicated function code of the manufacturer, the users don't operate it.

## **P8.1** Correction Group

| Function code | Function name                             | Setting scope    | Factory value |  |
|---------------|-------------------------------------------|------------------|---------------|--|
| P8.1.00       | Voltage Input of Potentiometer Correction | 00.00V~P8.1.02   | 00.20         |  |
| F 8.1.00      | Point 1                                   | 00.00 V~F 8.1.02 | 00.20         |  |
| P8.1.01       | Corresponding reference of Potentiometer  | -100.0%~100.0%   | 000.0         |  |
| P8.1.01       | Correction Point 1                        | -100.0%~100.0%   | 000.0         |  |
| P8.1.02       | Voltage Input of Potentiometer Correction | P8.1.00~10.00V   | 09.50         |  |
| F 8.1.02      | Point 2                                   | F8.1.00~10.00V   | 09.50         |  |
| P8.1.03       | Corresponding reference of Potentiometer  | -100.0%~100.0%   | 100.0         |  |
|               | Correction Point 2                        | -100.0%~100.0%   | 100.0         |  |
| P8.1.04       | Filtering time of potentiometer           | 00.00s~10.00s    | 00.10         |  |

The function codes of this group are used to correct the potentiometer to get rid of the impact of zero-offset or voltage attenuation caused by overlong keyboard lines. When leaving the factory, the function parameters of this group have been corrected, when resetting to factory value, the reset value is the value after factory correction. Generally, the application site is not required to conduct correction.

| Function code | Function name                            | Setting scope | Factory value |
|---------------|------------------------------------------|---------------|---------------|
| P8.1.05       | AVI actual voltage 1                     | 0.500V~4.000V | 2.000         |
| P8.1.06       | AVI indicated voltage 1                  | 0.500V~4.000V | 2.000         |
| P8.1.07       | AVI actual voltage 2                     | 6.000V~9.999V | 8.000         |
| P8.1.08       | AVI indicated voltage 2                  | 6.000V~9.999V | 8.000         |
| P8.1.09       | ACI actual voltage 1                     | 0.500V~4.000V | 2.000         |
| P8.1.10       | ACI indicated voltage 1                  | 0.500V~4.000V | 2.000         |
| P8.1.11       | ACI actual voltage 2                     | 6.000V~9.999V | 8.000         |
| P8.1.12       | ACI indicated voltage 2 6.000V~9.999V 8. |               | 8.000         |

The function codes of this group are used to correct analog input AVI, ACI to get rid of the impact of AVI, ACI input zero-offset or gain. When leaving the factory, the function parameters of this group have been corrected, when resetting to factory value, the reset value is the value after factory correction. Generally, the application site is not required to conduct correction.

Actual Voltage: use the measuring instruments to measure the voltage such as multi-meter, etc.

Voltage Display: the voltage display value from the sampling of the frequency inverter refers to voltage display before AVI、ACI correction of Group P9 (P9.0.19, P9.0.20).

When correcting, input two voltage values on each AVI ACI input terminal and then input actually measured voltage value and display voltage to corresponding function codes, the frequency inverter can conduct correction automatically.

| Function code | Function name        | Setting scope | Factory value |
|---------------|----------------------|---------------|---------------|
| P8.1.13       | FM1 target voltage 1 | 0.500V~4.000V | 2.000         |
| P8.1.14       | FM1 actual voltage 1 | 0.500V~4.000V | 2.000         |
| P8.1.15       | FM1 target voltage 2 | 6.000V~9.999V | 8.000         |
| P8.1.16       | FM1 actual voltage 2 | 6.000V~9.999V | 8.000         |

The function codes of this group are used to correct analog output FM. If the correction has been done when leaving the factory, when resetting to factory value, the reset value is the value after factory correction. Generally, the application site cannot need to conduct correction.

Actually Measured Voltage: use the measuring instruments to measure the voltage between terminal FM and terminal COM, such as multi-meter, etc.

Target Voltage: refer to theoretical voltage value of the frequency inverter based on corresponding relationship of analog output.

When correcting, output two voltage values on each FM terminal and then input actually measured voltage value and target voltage to corresponding function codes, the frequency inverter can conduct correction automatically.

## 6.10 Group P9- Monitoring Parameter

## **P9.0 Basic Monitoring Parameter**

P9 Parameter Group is used to monitor running state information of the frequency inverter, the users can set corresponding parameter as required, which can not only be rapidly viewed through panel for easy debugging and maintenance on site, but also read through communication for monitoring of upper computer.

| Function code                | Function name          | Description                                                                                                     | Unit   |
|------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------|--------|
| P9.0.00                      | Running Frequency      | Output frequency when the frequency inverter runs                                                               | 0.01Hz |
| P9.0.01                      | Reference frequency    | Reference frequency of the frequency inverter                                                                   | 0.01Hz |
| P9.0.02                      | Output Current         | Output current when the frequency inverter runs                                                                 | 0.01A  |
| P9.0.03                      | Output Voltage         | Output current when the frequency inverter runs                                                                 | 1V     |
| P9.0.04                      | Bus Voltage            | Voltage on DC Bus of the frequency inverter                                                                     | 0.1V   |
| P9.0.05                      | Output Torque          | When the frequency inverter runs, the output torque is<br>the percentage of rated torque of the motor           | 0.1%   |
| P9.0.06                      | Output Power           | Output frequency when the frequency inverter runs                                                               | 0.1kW  |
| P9.0.07                      | Input Terminal Status  | Check whether the input terminal has signal input                                                               |        |
| P9.0.08                      | Output Terminal Status | Check whether the output terminal has signal output                                                             |        |
| P9.0.09                      | AVI Voltage            | Check the voltage between AVI and COM                                                                           | 0.01V  |
| P9.0.10                      | ACI Voltage            | Check the voltage between ACI and COM                                                                           | 0.01V  |
| P9.0.11 Custom Display Value |                        | Display coefficient P5.0.15 and the value after<br>conversion of Decimal Point P5.0.16 through<br>customization |        |
| P9.0.12                      | Actual Counting Value  | View actual counting value of the frequency inverter for counting function                                      | 1      |
| P9.0.13 Actual Length Value  |                        | View actual counting value of the frequency inverter for fixed-length function                                  | 1m     |
| P9.0.14                      | PID Reference          | Product of PID reference value and PID reference feedback quantity                                              |        |
| P9.0.15                      | PID Feedback           | Product of PID feedback value and PID reference feedback rang                                                   |        |

| Function<br>code    | Function name                      | Description                                                                                               | Unit    |
|---------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------|---------|
| P9.0.16             | PULS Impulse<br>Frequency          | View the frequency of PULSE Impulse Input                                                                 | 0.01kHz |
| P9.0.17             | Feedback Speed                     | Actual output frequency when the frequency inverter runs                                                  | 0.1Hz   |
| P9.0.18             | PLC Stage                          | Display which stage the Simple PLC runs at                                                                | 1       |
| P9.0.19             | Voltage before AVI<br>Correction   | Voltage between AVI and COM before AVI correction                                                         | 0.001V  |
| P9.0.20             | Voltage before ACI<br>Correction   | Voltage between ACI and COM before ACI correction                                                         | 0.001V  |
| P9.0.21             | Line Speed                         | The sampling line speed of DI4 impulse is equal to the acquisition of impulse count per minute/ per meter | 1m/min  |
| P9.0.22             | Current Power-on Time              | Length of current power-on time                                                                           | 1min    |
| P9.0.23             | Current Running Time               | Length of current running time                                                                            | 0.1min  |
| P9.0.24             | Residual Running Time              | Residual running time at Timing Function of P3.1.00                                                       | 0.1min  |
| P9.0.25             | Frequency of Frequency<br>Source A | View the frequency given by Frequency A                                                                   | 0.01Hz  |
| P9.0.26             | Frequency of Frequency<br>Source B | Check the frequency given by Frequency B                                                                  | 0.01Hz  |
| P9.0.27             | Communication Set value            | The value set by corresponding communication address<br>A001 is the percentage of the highest frequency   | %       |
| P9.0.28             | PULSE Impulse<br>frequency         | Check the frequency of PULSE Impulse Input                                                                | 1Hz     |
| P9.0.29             | Reserved                           |                                                                                                           |         |
| P9.0.30             | Actual Distance Value              | Check actual distance value of the distance value of the frequency inverter                               |         |
| P9.0.31~P<br>9.0.45 | Reserved                           |                                                                                                           |         |
| P9.0.46             | Operation Result 1                 | Check the value of operation result 1                                                                     |         |
| P9.0.47             | Operation Result 2                 | Check the value of operation result 2                                                                     |         |
| P9.0.48             | Operation Result 3                 | Check the value of operation result 3                                                                     |         |
| P9.0.49             | Operation Result 4                 | Check the value of operation result 4                                                                     |         |
| P9.0.50             | User Standby<br>Monitoring Value 1 | Check the value of user special function                                                                  |         |
| P9.0.51             | User Standby<br>Monitoring Value 2 | Check the value of user special function                                                                  |         |
| P9.0.52             | User Standby<br>Monitoring Value 3 | Check the value of user special function                                                                  |         |
| P9.0.53             | User Standby<br>Monitoring Value 4 | Check the value of user special function                                                                  |         |
| P9.0.54             | User Standby<br>Monitoring Value 5 | Check the value of user special function                                                                  |         |

## **Corresponding Relationship of Input and Output Terminal State**

Whether the vertical line of the digital tube of each digit lights on, it indicates that whether the input and output terminal of each digit has the signal or not. If it lights on, it indicates that corresponding input terminal of this vertical line has signal input or the output terminal has signal output.

The display rules of Function Code P9.0.07 are shown as below:



The display rules of Function Code P9.0.08 are shown as below: (M is internal Intermediate Delay Relay)



## **Chapter 7 Common Function and Application Case**

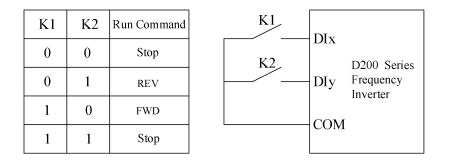
## 7.1 Common Function

## 7.1.1 Start and Stop Control

The D200 Series Frequency inverter has three kinds of start and stop control modes: keyboard control, terminal control and communication control.

## 1、 Keyboard Control (Set P0.0.03=0)

Press "RUN" Key on the keyboard, the frequency inverter starts; press "STOP" Key on the keyboard, the frequency inverter stops; the running direction is controlled by Function Code P0.0.06, it is forward rotation when at P0.0.06=0 and it is reverse rotation when at P0.0.06=1.


## 2、Terminal Control (Set P0.0.03=1)

Provide four kinds of terminal start and stop modes for option of the users: two-line mode 1, two-line mode 2, three-line mode 1 and three-line mode 2. Specific use methods are as below:

• Two-line Mode 1 (Set P2.0.11=0)

Any two terminals of DIx and DIy among multifunctional terminals are used to determine forward and reverse running of the more and all are the active level. The terminal function references are as below:

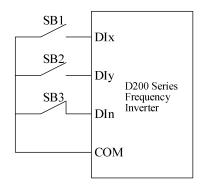
| Terminal | Reference value | Description           |
|----------|-----------------|-----------------------|
| DIx      | 1               | Forward Running (FWD) |
| DIy      | 2               | Reverse Running (REV) |



• Two-line Mode 2 (Set P2.0.11=1)

Any two terminals of DIx and DIy among multifunctional terminals are used to determine forward and reverse running of the motor, in which Terminal DIx is used as running enable terminal and DIy is used as terminal of confirming the running direction, all are the active level. The terminal function references are as below:

| Terminal | Setting value | Description           |
|----------|---------------|-----------------------|
| DIx      | 1             | Forward Running (FWD) |
| DIy      | 2             | Reverse Running (REV) |

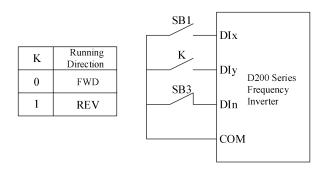

| K1 | K2 | Run Command | K1<br>DIx                 |
|----|----|-------------|---------------------------|
| 0  | 0  | Stop        | K2, D200 Series           |
| 0  | 1  | Stop        | DIy Frequency<br>Inverter |
| 1  | 0  | FWD         | COM                       |
| 1  | 1  | REV         | COM                       |

Chapter 7 Common Function and Application Case

## • Three-line Mode 1 (Set P2.0.11=2)

Any three terminals of DIx, DIy and DIn among multifunctional terminals are used to determine forward and reverse running of the motor, in which Terminal DIn is used as running enable terminal and DIx & DIy are used as terminal of confirming the running direction, Din is the active level and DIx & DIy are the active PLS. When the running is needed, the Terminal DIn must be closed at first and then the PLS of DIx or DIy are used to realize forward or reverse control of the motor. When the shutdown is needed, it is realized through disconnecting the signal of Terminal Din. The terminal function references are as below:

| Terminal | Setting value | Description            |
|----------|---------------|------------------------|
| DIx      | 1             | Forward Running (FWD)  |
| DIy      | 2             | Reverse Running (REV)  |
| DIn      | 3             | 3-line Running Control |




SB1 is the button of normally opened forward running, SB2 is the button of normally opened reverse running and SB3 is the button of normally closed stop

## • 3-line Control Mode 2 (Set P2.0.11=3)

Any three terminals of DIx, DIy and DIn among multifunctional terminals are used to determine forward and reverse running of the motor, in which Terminal DIn is used as enable terminal, DIx is used as running terminal and DIy is used as terminal of confirming the running direction, DIn and DIy are the active level and DIx is the active PLS. When the running is needed, the Terminal DIn must be closed at first and then the PLS of DIx is used to realize the running of the motor and the state of DIy is used to determine the running direction. When the shutdown is needed, it needs to be realized through disconnecting the signal of Terminal DIn. The terminal function references are as below:

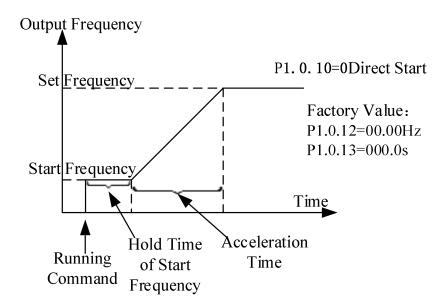
| Terminal | Reference Value | Description            |
|----------|-----------------|------------------------|
| DIx      | 1               | Forward Running (FWD)  |
| DIy      | 2               | Reverse Running (REV)  |
| DIn      | 3               | 3-line Running Control |



SB1 is the button of normally opened forward running, SB3 is the button of normally closed stop and K is the button of running direction option.

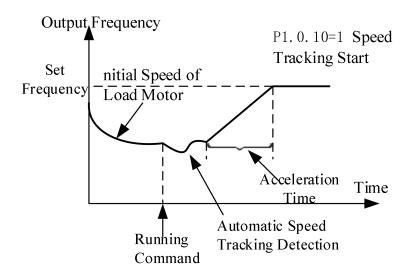
## 3、 Communication Control (Set P0.0.03=2)

The start, stop, FWD and REV of the frequency inverter is realized by the upper computer through Communication Mode RS-485. The D200 series frequency inverter supports Standard MODBUS Protocol, refer to Chapter VIII Communication RS-485 for more details.


## 7.1.2 Start and Stop Mode

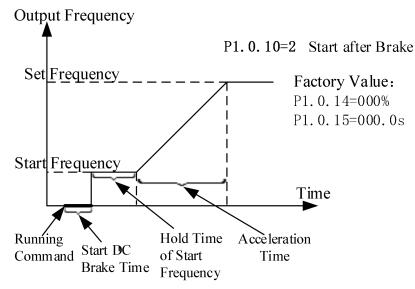
## 1. Start Mode

The D200 series frequency inverter includes 3 start modes: direct start, speed tracking start and start after brake.


• Direct Start (set P1.0.10=0)

The frequency inverter starts according to given start frequency (P1.0.12) and start frequency hold time (P1.0.13) and then speeds up to the reference frequency according to the selected acceleration time.




• Speed Tracking Start (Set P1.0.10=1)

The frequency inverter starts the speed tracking according to the speed tracking mode given by speed tracking mode P1.0.11 to track the running speed of the motor at which the frequency inverter starts until being accelerated or decelerated to reference frequency. When the motor hasn't stopped stably or is unable to stop, this function shall be adopted.

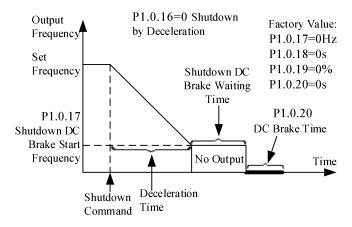


• Start after Brake (Set P1.0.10=2)

Before starting the motor normally, the frequency converter firstly deploys DC braking in accordance with the data set up in the parameters about starting DC braking current (P1.0.14) and starting DC braking time (P1.0.15). If the motor rotates reversely at low speed before starting, this function shall be used when starting the motor by rotating it forward.

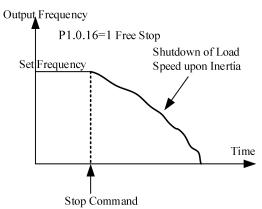


## 2. Stop Mode


The D200 series frequency inverter includes two stop modes: Deceleration Stop and Free Stop.

• Deceleration Stop (Set P1.0.16=0)

After the stop command is effective, the frequency inverter reduces the output frequency according to the selected deceleration time, and it stops when the output frequency is reduced to 0.


When it is required to prevent the frequency inverter from sliding and jittering when it quickly stops or stops at low speed, the stop DC brake function can be used, after the frequency inverter is reduced to frequency given by P1.0.17, it is to wait for the time given by P1.0.18 and start DC brake at current given by P1.0.19 until the time given by P1.0.20 is reached and then the frequency inverter stops DC brake.

When it is required to quickly stop at high speed, the dynamic braking shall be adopted. The built-in brake units of D200 series frequency inverter 15kW and below set the parameters of brake utilization rate P1.0.21 and externally connect brake resistance to adopt dynamic braking; the frequency inverters with power above 15kW can adopt dynamic braking only when they are configured with brake units and brake resistance. Refer to Appendix A2.5 for externally configured brake units and brake resistance.



## • Free Stop (Set P1.0.16=1)

After the stop command is effective, the frequency inverter immediately terminates the output and the motor stop freely by mechanical inertia. The users haven't had the stop requirements for load or when the load itself has the brake function, the function of free stop can be selected.



## 7.1.3 Acceleration and Deceleration Mode

Different load characteristics have different requirements for acceleration and deceleration time, the D200 series frequency inverter provides three kinds of acceleration and deceleration modes: Straight Line, Curve S1 and Curve S2, which are selected through Function Code P0.1.19. Additionally, the acceleration and deceleration time unit can be adjusted and set through Function Code P0.2.03.

• Straight Line (Set P0.1.19=0)

Start the linear speed from start frequency to reference frequency. The D200 series frequency inverter provides four kinds of linear acceleration and deceleration modes, which can be switched among different terminal combinations that are selected through acceleration and deceleration time.

• Curve S1 (Set P0.1.19=1)

The output frequency increases or decrease by Curve S. Curve S is the used for occasions required gentle start or stop. The parameters P0.1.20 and P0.1.21 respectively define the time scale of starting period and ending period of Curve S1.

• Curve S2 (Set P0.1.19=2)

In acceleration and deceleration of Curve S, the rated frequency of the motor is always the inflection point of Curve S. Generally, it is used for occasions that the high-speed areas above rated frequency require acceleration and deceleration.

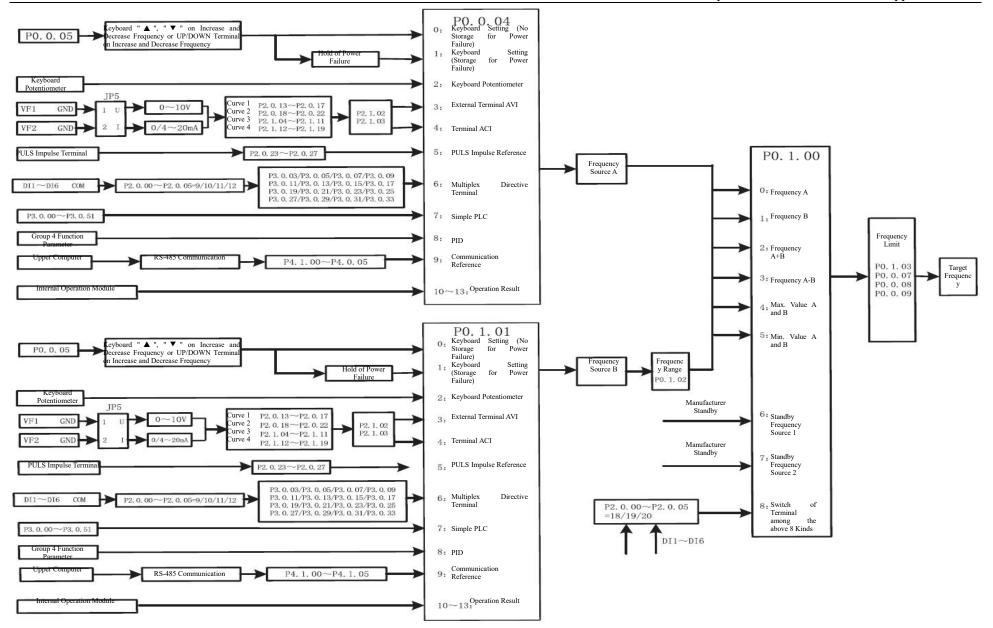
## 7.1.4 Jogging Function

The D200 series frequency inverter provides two kinds of the modes to realize jogging function: Keyboard Control and Terminal Control.

• Keyboard Control

Set the function of multi-functional Key JOG as forward jogging or reverse jogging (P5.0.00=1 or 2). The frequency inverter can use Key JOG to realize Jogging Function when it stops, and the jogging running frequency and acceleration and deceleration time can be set through Function Codes P0.1.08~P0.1.10.

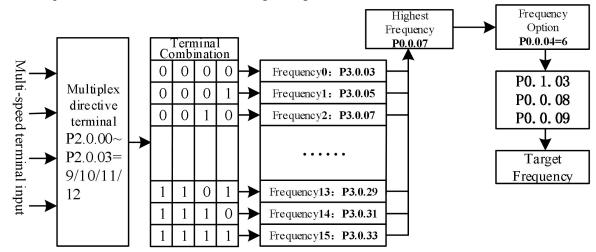
• Terminal control


Set the function of multi-functional DIx and DIy as forward jogging or reverse jogging. When the frequency inverter stops, it can use DIx and DIy to realize Jogging Function, and the jogging running frequency and acceleration and deceleration time can be set through Function Codes P0.1.08~P0.1.10.

Note: The jogging function of the above reference modes is the jogging effect when the frequency inverter is at stop state. If the frequency inverter is required to be at running state and the priority is given to the effect of Jogging Function, it is to set Function Code P0.1.25=1.

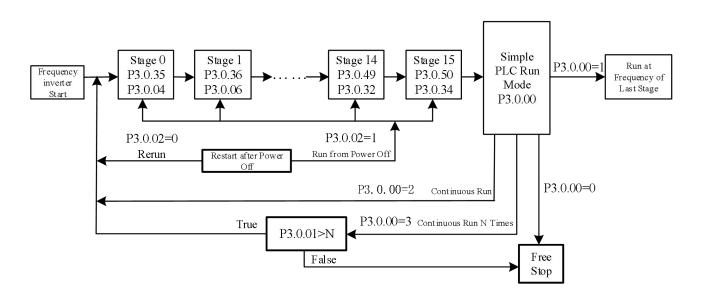
## 7.1.5 Running Frequency Control

The D200 series frequency inverter provides two Frequency Source Input Channels, that is, Frequency Source A and Frequency Source B respectively, they not only can work independently, but in combination mode through computer. Each frequency source has 14 kinds of references for option, so the optional requirements for different frequencies at different sites can be greatly satisfied. The factory default of the frequency inverter is Frequency Source A Reference. When two frequency sources are combined, Frequency Source A is main channel and Frequency Source B is auxiliary channel by default.


Detailed explanation for realization process of frequency selection is shown as the figure below:



Page 141


### 7.1.6 Multi-speed Function

The D200 series frequency inverter can realize the switch of 16-stage speed at most through different combination state of multiplex directive terminal. As for missing set digit, the calculation is made at state 0.



### 7.1.7 Simple PLC

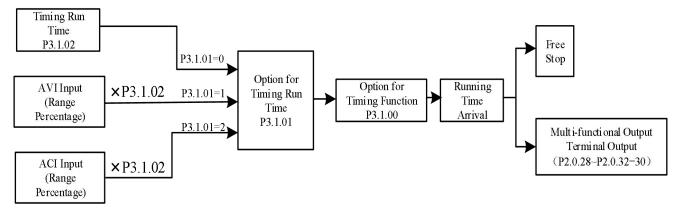
The D200 series frequency inverter can automatically run at 16-stage speed at most, the acceleration and deceleration time and the length of running time of each stage can be set independently (refer to Function Code P3.0.03~P3.0.50). Additionally, the times of cycle required can be set through P3.0.00 and P3.0.01.



| Function<br>Code | Function Name                     | Setting Scope                                                                                                                                                                            | Factory Value |
|------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| P3.1.00          | Timing Function Selection         | 0: Ineffective<br>1: Effective (min)<br>2: Effective (h)                                                                                                                                 | 0             |
| P3.1.01          | Tinning Running Time<br>Selection | <ul><li>0: Digit Reference (P3.1.02)</li><li>1: External Terminal AVI Reference</li><li>2: External Terminal ACI Reference</li><li>(Analog input range corresponds to P3.1.02)</li></ul> | 0             |
| P3.1.02          | Tinning Running Time              | 0000.0min/h~6500.0min/h (unit depends on P3.1.00)                                                                                                                                        | 0000.0        |

7.1.8 Timing Function

The D200 series frequency inverter has built-in Timing Function to complete its timing running.


Function Code P3.1.00 determines whether the timing function is valid.

Function Code P3.1.01 determines the source of fixed running time.

When at P3.1.01=0, the fixed running time is given by the value set by Function Code P3.1.02.

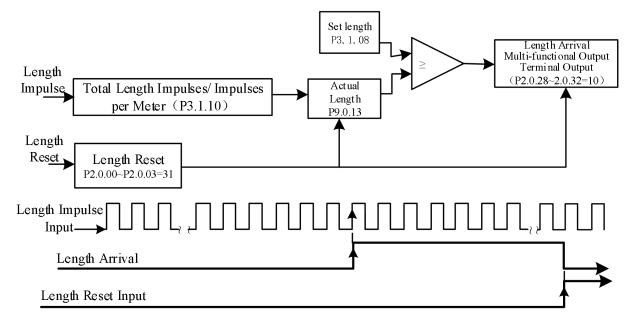
When at P3.1.01=1 or 2, the fixed running time is given by external analog input terminal. The D200 series frequency inverter provides 2-way analog input terminal (AVI, ACI). AVI is used for voltage ( $0V \sim 10V$ ) input, ACI is used for current ( $0/4mA \sim 20mA$ ) input. As for corresponding relation curve between the input of AVI and ACI and fixed running time, the users can freely choose from 4 kinds of the relation curves through function code P2.1.02, in which Curve 1 and Curve 2 are linear relationship able to be set through Function Codes P2.0.13~P2.0.22, and Curve 3 and Curve 4 are broken line relationship with two inflection points able to be set through Function Codes P2.1.04~P2.1.19. At this time, the analog input range corresponds to the value given by Function Code P3.1.02.

When the Timing Function is effective, the frequency inverter needs to restart timing for every start, when reaching the reference time, the frequency inverter stops automatically. During the process of stop, the multi-functional output terminals of the frequency inverter output Signal ON. When the stop process ends, multi-functional output terminals output Signal OFF. Corresponding multi-functional output terminals are Timing Arrival Output (30). When the reference time is 0, the fixed time is not limited. Actual time of current running can be viewed through Function Code P9.0.23 (when the frequency inverter shuts down, the display value of P9.0.23 automatically resets to 0).



Chapter 7 Common Function and Application Case

| 7.1.9 Fixed-length Function |                         |               |               |  |
|-----------------------------|-------------------------|---------------|---------------|--|
| Function Code               | Function Name           | Setting Scope | Factory Value |  |
| P3.1.08                     | Reference Length        | 00000m~65535m | 01000         |  |
| P3.1.09                     | Actual Length           | 00000m~65535m | 00000         |  |
| P3.1.10                     | Impulse Count per meter | 0000.1~6553.5 | 0100.0        |  |


The D200 series frequency inverter has built-in fixed-length function to realize fixed-length control. In the application, corresponding digital input terminal is required to be set as "Length Counting Input" (Function 30). When the input impulse frequency is higher, Terminal DI4 must be adopted. The formula for length calculation is as below:

Actual Length= Total Impulses from Acquisition of Terminal/ Impulses per meter

When actual length reaches the reference length (value set by P3.1.08), the multi-functional output terminals of the frequency inverter can output Signal ON. Corresponding multi-functional output terminal function is Length Arrival (10).

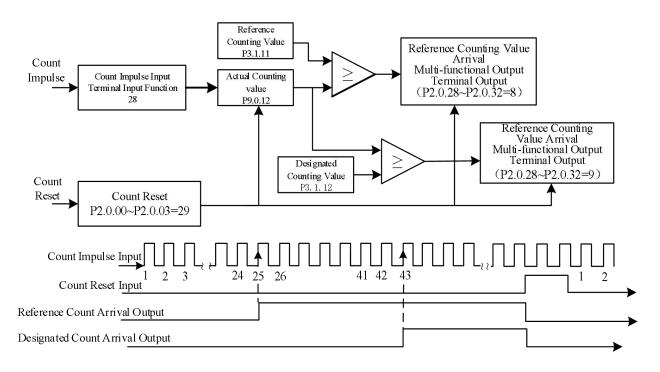
In the process of fixed-length control, the reset operation to actual length can be realized through digital input terminal. Corresponding digital input terminal function is Length Reset (31).

Actual length can be viewed through Function Codes P3.1.09 or P9.0.13.



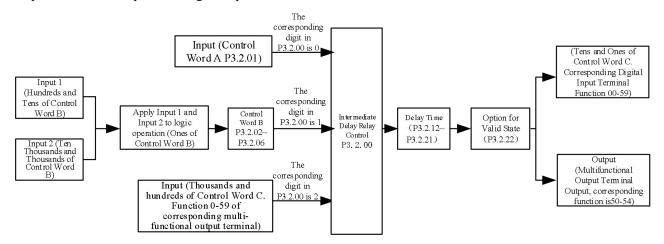
### 7.1.10 Counting Function

| Function Code | Function Name          | Setting Scope | Factory Value |
|---------------|------------------------|---------------|---------------|
| P3.1.11       | Reference Count Value  | 00001~65535   | 01000         |
| P3.1.12       | Designated Count Value | 00001~65535   | 01000         |


The counting function of D200 series frequency inverter has two-level signal output, that is, reference counting

value arrival and designated counting value arrival. In the application, corresponding digital input terminal function is required to be set as "Counter Input" (Function 28). When the impulse frequency is higher, Terminal DI4 must be adopted.

When actual counting value reaches the reference value (set by P3.1.11), the multi-functional output terminals of the frequency inverter can output Signal ON. Corresponding multi-functional output terminal function is Reference Counting Value Arrival (8).

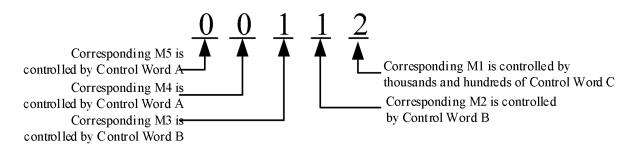

When actual counting value reaches the reference value (set by P3.1.12), the multi-functional output terminals of the frequency inverter can output Signal ON. Corresponding multi-functional output terminal function is Reference Counting Value Arrival (9).

In the counting process, the reset operation to actual counting value can be realized through digital input terminal. Corresponding digital input terminal function is Counter Reset (29). Actual counting value can be viewed through Function Code P9.0.12.



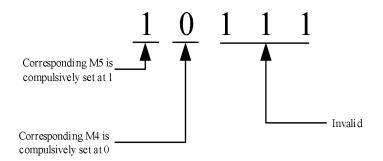
### 7.1.11 Simple Internal Relay Programmable Function

The D200 series frequency inverter has 5 built-in virtual Intermediate Delay Relays, which not only can collect the physical signals of digital input terminal of the frequency inverter, but virtual signals of multi-functional output terminals (00~59). And then it is to conduct simple logic running and output the results to multi-functional output terminals or equivalent digital input terminal.

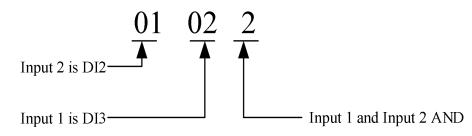



Description for Control Logic Function of Intermediate Delay Relay Control Word B

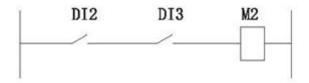
| Function code                 | Setting value for<br>unit's digit | Function                                                                                   | Description                                                                                                                                                                                       |
|-------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               | 0                                 | Input 1<br>Input 1 and NOT                                                                 | If input 1 is true, the logic result is true,<br>If input 1 is false, the logic result is false<br>If input 1 is true, the logic result is false<br>If input 1 is false, the logic result is true |
| P3.2.02                       | 2                                 | Input 1 and Input 2<br>AND                                                                 | If Input 1 and Input 2 are true, the logic result is<br>true, else false                                                                                                                          |
| P3.2.03                       | 3                                 | Input 1 and Input 2 OR                                                                     | Any one of Input 1 and Input 2 is true, the logic result is true,                                                                                                                                 |
| P3.2.04<br>P3.2.05<br>P3.2.06 | 4                                 | Input 1 and Input 2<br>XOR                                                                 | If Input 1 and Input 2 are opposite logic, the logic<br>result is true<br>If Input 1 and Input 2 have same logic, the logic<br>result is false                                                    |
|                               | 5                                 | The valid reference of<br>Input 1 is valid<br>The valid Reference of<br>Input 2 is invalid | If input 1 is true, the logic result is true,<br>If input 2 is true and input 1 is false, the logic result<br>is true, the logic result is false                                                  |


| Function<br>code | Setting value<br>for unit's digit | Function                        | Description                                         |
|------------------|-----------------------------------|---------------------------------|-----------------------------------------------------|
| code             | for unit's digit                  |                                 |                                                     |
|                  |                                   | Valid reference of Input 1 Rise | If Input 1 Rising Edge is true, the logic result is |
|                  | 6                                 | Edge is valid                   | true                                                |
|                  | 0                                 | Valid reference of Input 2 Rise | If Input 2 Rising Edge is true, the logic result is |
| P3.2.02          |                                   | Edge is invalid                 | false                                               |
| P3.2.03          | 7                                 | Reverse valid signal of Input 1 | If Input 1 Rising Edge is true, the logic result is |
| P3.2.04          | /                                 | Rising Edge                     | reverse                                             |
| P3.2.05          |                                   | Input 1 Rise Edge is valid and  | If Input 1 Rising Edge is true, the logic result is |
| P3.2.06          | 8                                 | output a impulse signal with    | true, after keeping it 200ms, the logic result      |
|                  |                                   | width of 200ms                  | becomes false                                       |
|                  | 0                                 | Input 1 Rise Edge and Input 2   | If Input 1 Rising Edge and Input 2 Rising Edge      |
|                  | 9                                 | AND                             | are true, the logic result is true or false         |

For instance, in case of setting Function Code P3.2.00 (Intermediate Delay Relay Control)=00112, we can learn from referring to the explanation of Function Code P3.2.00 that Relay 5 (M5) & Relay 4 (M4) are determined by Control Word A and Relay 3 (M3) & Relay 2 (M2) are determined by Control Word B, and Relay 1 (M1) is determined by thousands and hundreds of Control Word C, as shown in the figure below:



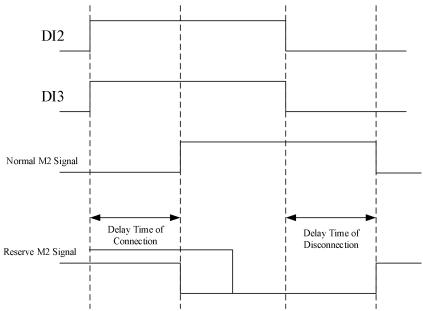

In combination with the example above, in case of setting P3.2.01 (Intermediate Delay Relay Control Word A))=10111, it is to compulsively set M5=1 and M4=0.


For M3, M2 and M1 are not determined by Control Word A, so the setting of P3.2.01 to M3, M2 and M1 is invalid.



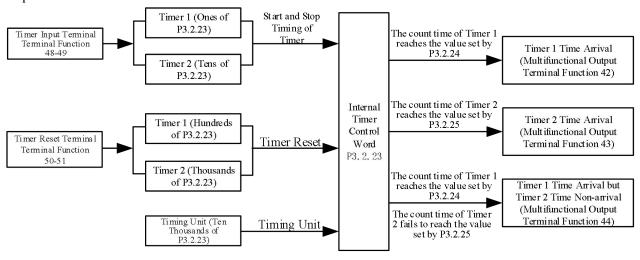
In combination with the example above, in case of setting P3.2.03 (Control Word B of Corresponding M2)=01022, we can learn from referring to the explanation of Function Code P3.2.03 that M2=DI2&&DI3, as shown in the figure below:




Equivalent as shown in the figure below:



In combination with the example above, in case of setting the tens and ones of P3.2.08 (Control Word C of Corresponding M2) at 01 (input terminal function of corresponding digital), it indicates that the function of M2 is forward running. If 51(Synchronous Intermediate Relay M2) is set among P2.0.28~P2.0.32 at the same time, corresponding multi-functional output terminal outputs the signal.



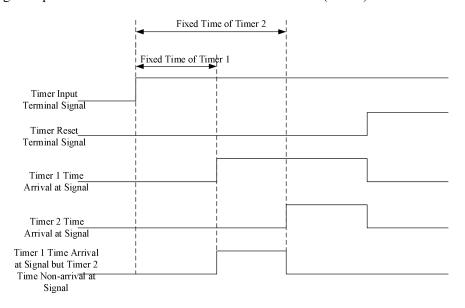

The Intermediate Relay can not only respectively preset the delay time for its connection and disconnection through Function Codes P3.2.12~P3.2.16 and P3.2.17~P3.2.21, but preset whether the reverse operation is conducted for output signals through Function Code P3.2.22. In combination with the example above, in case of setting P3.2.13 (delay time of corresponding M2 connection) =10.0s and P3.2.18 (delay time of corresponding M2 connected, M2 is not immediately connected, but connected after waiting for 10.0s. Similarly, when one of DI2 or DI3 is disconnected, M2 is not immediately disconnected, but disconnected after waiting for 5.0s.



#### 7.1.12 Internal Timer Function

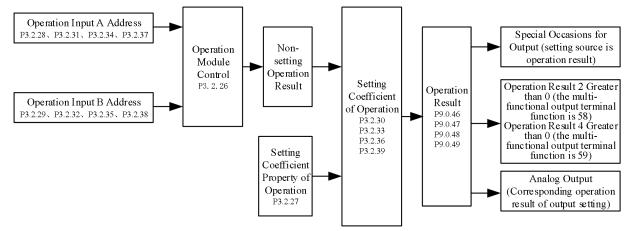
The D200 series frequency inverter has 2 built-in timers, their start, shutdown timing and timer reset can be realized through digital input terminal. The fixed time arrival can output the signals through multi-functional output terminal.




When the signal of the output terminal of the timer (terminal function  $48 \sim 49$ ) is valid, the timer starts timing. When the signal of the input terminal of the timer is invalid, the timer stops timing and keeps current value.

When actual timing value of Timer 1 reaches the value set by P3.2.24, the multi-functional output terminals of the frequency inverter can output Signal ON. Corresponding multi-functional output terminal function is the Timer 1 Time Arrival (42).

When actual timing value of Timer 2 reaches the value set by P3.2.25, the multi-functional output terminals of the frequency inverter can output Signal ON. Corresponding multi-functional output terminal function is the Timer 2 Time Arrival (43).


When actual timing value of Timer 1 reaches the value set by P3.2.24, but actual timing value of Timer 2 fails to reach the value set by P3.2.25, the multi-functional output terminals of the frequency inverter output Signal ON. When actual timing value of Timer 2 reaches the value set by P3.2.25, the multi-functional output terminals of the frequency inverter output Signal OFF. Corresponding multi-functional output terminal function is Timer 1 Time Arrival, but Timer 2 Time Non-Arrival (44).

In the process of timing, the reset operation to actual timing value can be realized through digital input terminal. Corresponding digital input terminal function is the Timer Reset Terminal (50~51).



### 7.1.13 Internal Operation Module Function

The D200 series frequency inverter has one 4-way built-in operation module, which collects the data of two function codes of the frequency inverter (remove the value after the decimal point) to conduct simple operation and finally output the operation results into special use occasions .Certainly, the operation results can also be used to realize the actions of multi-functional output terminals and the output of the analog signal.



Control Explanation for Operation Module

| Function code | Corresponding<br>setting value | Function              | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------|--------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | 0                              | No Operation          | No operation conducted                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               | 1                              | Add Operation         | Address A data + Address B data                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | 2                              | Subtraction Operation | Address A data - Address B data                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | 3                              | Multiply Operation    | Address A data * Address B data                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | 4                              | Division Operation    | Address A data / Address B data                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | 5                              | Greater than          | If Address A data>Address B data, the non-setting                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               | 3                              | Judgment              | operation result is 1, else it is 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               | 6                              | Equal to Judgment     | If Address A data=Address B data, the non-setting                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               | 0                              | Equal to Judgment     | operation result is 1, else it is 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| P3.2.26       | 7                              | Equal to or Greater   | If Address A data≥Address B data, the non-setting                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               | /                              | than Judgment         | operation result is 1, else it is 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               | 8                              | Integration           | Time of every Address B Data (ms as unit) means<br>Address A Data added to non-setting operation result,<br>for example, if Address A Data is 10 and Address B<br>Data is 1000, it indicates that 10 is added to non-setting<br>operation result per 1000ms. The scope of the operation<br>results is -32767~32767. When the operation results is<br>less than -9999, all displayed decimal points of the<br>digital tube completely indicate minus value, e.g.<br>"1.0.1.0.0" means -10100. |
|               | 9~F                            | Reservation           | Reservation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| Function | Corresponding                           | Function                                                                           | Description                                                                                                         |
|----------|-----------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| code     | setting value                           |                                                                                    | *                                                                                                                   |
|          | 0                                       | Conduct setting at no decimal<br>fraction to system by multiplication<br>algorithm | Non-setting Operation Result * Setting<br>Coefficient of Operation                                                  |
|          | 1                                       | Operate the Setting Coefficient by multiplication with one decimal                 | Non-setting Operation Result * Setting<br>Coefficient of Operation/10                                               |
|          | 2                                       | Operate the Setting Coefficient by multiplication with two decimals                | Non-setting Operation Result * Setting<br>Coefficient of Operation/100                                              |
|          | 3                                       | Operate the Setting Coefficient by multiplication with three decimals              | Non-setting Operation Result * Setting<br>Coefficient of Operation/1000                                             |
|          | 4                                       | Operate the Setting Coefficient by multiplication with four decimals               | Non-setting Operation Result * Setting<br>Coefficient of Operation/10000                                            |
|          | 5                                       | Operate the Setting Coefficient by division without decimal                        | Non-setting Operation Result / Setting<br>Coefficient of Operation                                                  |
|          | 6                                       | Operate the Setting Coefficient by division with one decimal                       | Non-setting Operation Result / Setting<br>Coefficient of Operation *10                                              |
|          | 7                                       | Operate the Setting Coefficient by division with two decimals                      | Non-setting Operation Result / Setting<br>Coefficient of Operation *100                                             |
| P3.2.27  | 3.2.27 8 divi<br>9 Ope<br>divi<br>A Ope | Operate the Setting Coefficient by division with three decimals                    | Non-setting Operation Result / Setting<br>Coefficient of Operation *1000                                            |
|          |                                         | Operate the Setting Coefficient by division with four decimals                     | Non-setting Operation Result / Setting<br>Coefficient of Operation *10000                                           |
|          |                                         | Operate the Setting Coefficient by division without decimal                        | Non-setting operation result / number of<br>function code corresponding to operation<br>setting coefficient         |
|          | В                                       | Operate the Setting Coefficient by division with one decimal                       | Non-setting operation result / number of<br>function code corresponding to operation<br>setting coefficient * 10    |
|          |                                         | Operate the Setting Coefficient by division with two decimals                      | Non-setting operation result / number of<br>function code corresponding to operation<br>setting coefficient * 100   |
| _        | D                                       | Operate the Setting Coefficient by division with three decimals                    | Non-setting operation result / number of<br>function code corresponding to operation<br>setting coefficient * 1000  |
|          | E                                       | Operate the Setting Coefficient by division with four decimals                     | Non-setting operation result / number of<br>function code corresponding to operation<br>setting coefficient * 10000 |

Explanation for Setting Coefficient Property of Operation:

Note: 5~9 are operation setting coefficients and can be directly included in the operation, and A~E are not operation setting coefficients and can't be directly included in the operation. The operation setting coefficient is used to point to a function code number and only the number of function code can be included in the operation.

| Operation Results oriented                           | Scope of Operation Results                     |
|------------------------------------------------------|------------------------------------------------|
| Operation Results Oriented Reference Frequency       | -Highest Frequency ~ Highest Frequency (Remove |
| Operation Results Oriented Reference Frequency       | Decimal Point)                                 |
| Operation Results Oriented Reference Upper Frequency | 0~Highest Frequency (Remove Decimal Point)     |
| Operation Results Oriented PID Reference             | -1000~1000 means -100.0%~100.0%                |
| Operation Results Oriented PID Feedback              | -1000~1000 means -100.0%~100.0%                |
| Operation Results Oriented Torque Reference          | -1000~1000 means -100.0%~100.0%                |
|                                                      | Operation Result 1: -1000~1000                 |
| On anotican Desculta Oriented Anales Output          | Operation Result 2: 0~1000                     |
| Operation Results Oriented Analog Output             | Operation Result 3: -1000~1000                 |
|                                                      | Operation Result 4: 0~1000                     |

#### Control Explanation for Operation Results

The operation result 1 can be reviewed through Function Code P9.0.46.

The operation result 2 can be reviewed through Function Code P9.0.47.

The operation result 3 can be reviewed through Function Code P9.0.48.

The operation result 4 can be reviewed through Function Code P9.0.49.

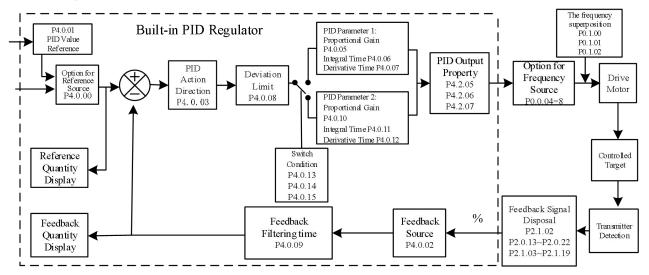
For instance: the sum of AVI Reference and ACI Reference can be used to torque reference through Operation 2. When the scope of torque reference is 0.0%~100.0%, the desired scope of operation results is 0~1000. For the scope of reference voltage of AVI and ACI is 00.00~10.00m, the scope of the non-setting operation results of Operation 2 is 0~2000, but the desired scope of operation results can be reached through division by two. The parameters of the function code are required to be set as below:

| Function code | Function name                             | Setting value | Explanation                                                       |
|---------------|-------------------------------------------|---------------|-------------------------------------------------------------------|
| P1.1.14       | Torque Reference Source                   | 9             | Torque Reference Source from Operation<br>Result 2                |
| P3.2.26       | Operation Module                          | H.0010        | Select addition operation for operation 2                         |
| P3.2.27       | Operation Setting Coefficient<br>Property | H.0050        | Operate the setting coefficient by division without decimals      |
| P3.2.31       | Input A of Operation 2                    | 09009         | Operate corresponding Function Code<br>P9.0.09 by unsigned number |
| P3.2.32       | Input B of Operation 2                    | 09010         | Operate corresponding Function Code<br>P9.0.10 by unsigned number |
| P3.2.33       | Setting Coefficient of Operation 2        | 2             | The setting coefficient is 2                                      |

The above description means:

Operation result = (number in P9.0.09 + number in P9.0.10) /2

If P3.2.27= H.00A0, the above description means:


Operation result = (number in P9.0.09 + number in P9.0.10) / number in P0.0.02

If P0.0.02=1,

Operation result = (number in P9.0.09 + number in P9.0.10) / 1

### 7.1.14 PID Function

The D200 series frequency inverter has built-in PID Regulator, which is configured with the option for signal reference channel and signal feedback channel, the users can easily realize automatic regulation of process control and control applications on constant voltage, constant flow, constant temperature, tension, etc. When in use of PID Frequency Closed-loop Control, the users need to preset the running frequency and reference mode and select P0.0.04 as 8 (PID Control), that is, PID Automatic Regulation on Output Frequency, related parameters of PID are given in Group P4 and the use methods of PID are as below:



The frequency inverter has 2 built-in equivalent PID computing units ,the performance parameters can be preset separately to realize optimum usage of regulating speed and accuracy, the users can use multi-functional terminals or setting deviation adjustment to freely switch different regulation performance required by different stage.

| Function code | Function name              | Setting scope                      | Factory Value |
|---------------|----------------------------|------------------------------------|---------------|
| D2 1 02       | Wahhulating Deference Made | 0: Relative to Reference frequency | 0             |
| P3.1.03       | Wobbulating Reference Mode | 1: Relative to Highest Frequency   | 0             |
| P3.1.04       | Wobbulating Range          | 000.0%~100.0%                      | 000.0         |
| P3.1.05       | Kicking Range              | 00.0%~50.0%                        | 00.0          |
| P3.1.06       | Wobbulating Cycle          | 0000.1s~3000.0s                    | 0010.0        |
| D2 1 07       | Rise Time of Wobbulating   | 000.10/_100.00/                    | 050.0         |
| P3.1.07       | Triangular Wave            | 000.1%~100.0%                      | 050.0         |

7.1.15 Wobbulating Function

In some occasions, the Wobbulation can improve the control performance of the equipments, e.g. winding equipments in textile, fiber, etc., the use of the Wobbulating Function can improve the uniform tightness of the winding of spindle. Through setting Function Code P3.1.03~P3.1.07, it is to realize the reference frequency as wobbulating performance of the central frequency.

The Function Code P3.1.03 is used to confirm the reference quantity of amplitude. The Function Code P3.1.04 is used to determine the size of the amplitude. The Function Code P3.1.05 is used to confirm the size of mutation frequency of the wobbulation.

When at P3.1.03=0, the amplitude is variable amplitude system in relative to reference frequency, which will change along the reference frequency

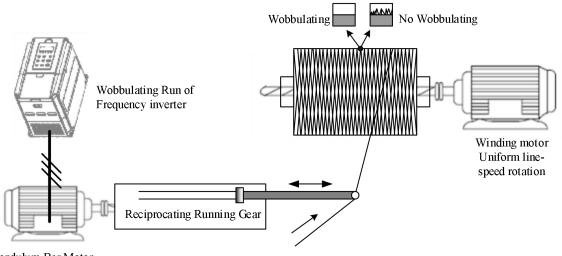
Amplitude = Reference Frequency \*Amplitude of Wobbulation

Mutation Frequency = Reference Frequency \*Amplitude of Wobbulation \*Sudden Jump of Amplitude

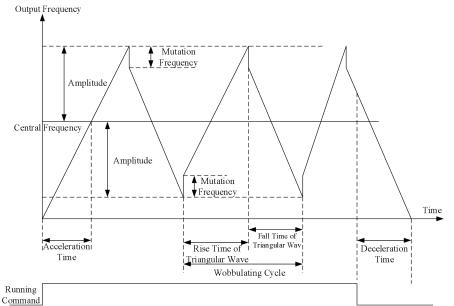
When at P3.1.03=1, the amplitude is fixed amplitude system in relative to reference frequency, which is a fixed amplitude.

Amplitude = Reference Frequency \*Amplitude of Wobbulation

Mutation Frequency = Reference Frequency \*Amplitude of Wobbulation \*Sudden Jump of Amplitude


#### Chapter 7 Common Function and Application Case

Wobbulating Cycle: refer to the time value of a complete wobbulating cycle.


Triangular Wave Rise Time of Wobbulation: refer to the percentage of Triangular Wave Rise Time relative to wobbulating cycle (P3.1.06).

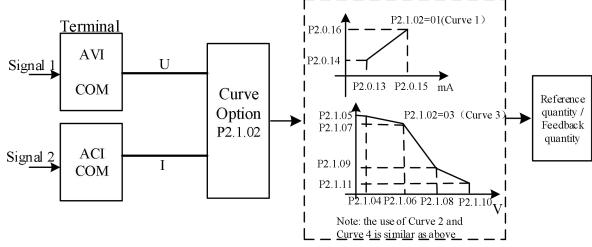
Triangular Wave Rise Time = Wobbulating Cycle\*Triangular Wave Rise Time of Wobbulation, Unit: Second. Triangular Wave Fall Time = Wobbulating Cycle\*(1-Triangular Wave Rise Time of Wobbulation), Unit: Second.

Refer to the figure below for explanation:



Pendulum Bar Motor




Note: the output frequency of wobbulation is subject to upper frequency and lower frequency

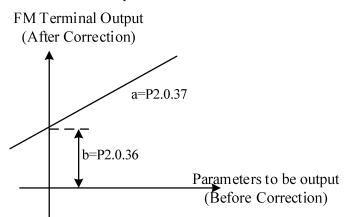
### 7.1.16 Analog Input/Output Use

### 1. Analog Input

The D200 series frequency inverter supports 2-way analog input, AVI can only be a voltage signal ranging from 0V to 10V, and ACI can only be a current signal ranging from 0/4mA to 20mA.

When the frequency inverter uses the analog input as frequency source reference, torque reference, PID reference or feedback, corresponding curve can be chosen for the relationship between the voltage or current value and reference value or feedback quantity through function code P2.1.02, and the corresponding curve parameters are set. The sampling value of Terminal VF can be viewed through Function Codes P9.0.09 and P9.0.10. Refer to the figure below for explanation:




NOTE: The default value of inverter's analog input is  $0V \sim 10V$ . If the input is  $0mA \sim 20mA$ , it will remain  $0V \sim 10V$ ; if the input is  $4mA \sim 20mA$ , it will remain  $2V \sim 10V$ .

### 2. Analog Output

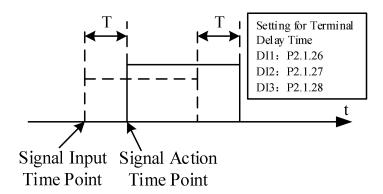
The D200 series frequency inverter supports 1-way analog output, which can be voltage signal or can also be current signal.

| Output |        |                | Shift switch J4 to U side, which enable to receive the signal at 0V~10VDC. |
|--------|--------|----------------|----------------------------------------------------------------------------|
| Output | 1.1411 | Current source | Shift switch J4 to I side, which enable to receive the signal at 0mA~20mA. |

FM1 can indicate internal running parameters through output analog mode. The indicated contents of the parameters can be selected through Function Codes P2.0.33. The analog output signal can be corrected through Function Codes P2.0.36 and P2.0.37 before output, the correction effect is shown in the figure below:



Corrected Output Y= aX+b (X means running parameters to be output, a means output gain and b is output offset).


### 7.1.17 Digital Input/Output Use

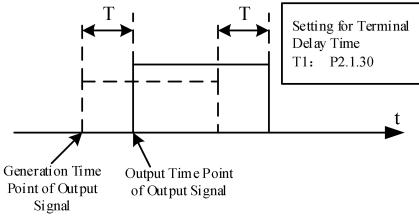
### 1. Digital Input

The D200 series frequency inverter provides 4 digital input ports, the number is DI1 $\sim$ DI4, AVI and ACI can be also set as digital input via the function codes P2.1.23 and P2.1.24.

The digital input terminal adopts internal power by factory default, which is valid for short circuit to Terminal COM (indicated as 1) and invalid for disconnection (indicated as 0), it also can make its indicated effect reverse through setting Function Code P2.1.00 and P2.1.01. When AVI, ACI is used as digital input, the short circuit of 10V Power Terminal of the frequency inverter and AVI, ACI is valid, but invalid for disconnection, and the indicated effect can also be reversed through Function Code P2.1.25.

Terminal DI1~DI3 can also be used to set the delay effect time through Function Code P2.1.26~P2.1.28 and available for the occasions that require to delay the signal effect.



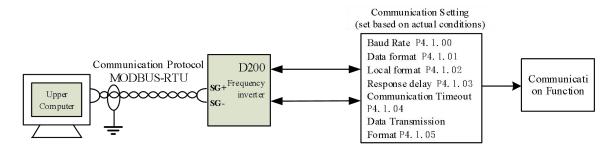

T is the delayed time

### 2. Digital Output

The D200 series frequency inverter provides 1 multi-function output port, namely T1 relay.

| Port name | Function code | Output description                                           |
|-----------|---------------|--------------------------------------------------------------|
| T1 relay  | P2.0.29       | Relay: drive capability: 250VAC, 3A below or 30VDC, 3A below |

The delay output time of T1 output port can be also set via the function code P2.1.30, and it can be used where the signal delay output is required.




T is the delayed time

### 7.1.18 Communication of Upper Computer

With the use of automation control more and more widely, the application of the upper computer to control the operation of the inverter by means of communication is more and more, the use of RS485 network, can communicate with Delixi D200 series inverter. D200 series inverter control board standard with communication interface, the upper computer can be correctly connected to achieve communication.

The D200 Series Frequency Inverter adopts MODBUS-RTU Protocol, which can only be used as slave station, namely, it can only handle and reply the data from upper computer, but not initiatively send the data. When communicating, it is required to set the parameters of Function Code P4.1.00~P4.1.05. These parameters need to be set based on actual conditions, if the setting is improper, it may cause the communication unable to be done or abnormal communication. When the communication timeout (P4.1.04) is set at non-zero data, the frequency inverter automatically shuts down after the fault of communication timeout to avoid the frequency inverter from running without control to lead to adverse consequence when the communication or upper computer breaks down. As for specific use of Communication Protocol, refer to the Description of Chapter VIII for more details. The figure below is communication diagram of D200.



### 7.1.19 Parameter Identification

The accuracy of motor parameters  $P0.0.19 \sim P0.0.23$  directly affects the control performance of frequency converter. If the frequency converter needs to have good control performance and operation efficiency, the frequency converter must obtain the accurate parameters of the controlled motor. If you know exactly the motor parameters, you can manually input the motor parameters to  $P0.0.19 \sim P0.0.23$ ; otherwise, you need to use the parameter identification control function.

The Parameter Identification Control Modes include Static Identification, Complete Identification, Load Synchronous Machine Identification and Non-load Synchronous Machine Identification. As for Parameter Identification Control of the asynchronous motor, it suggests using the Complete Identification Mode at on-load run. (P0.0.24=2)

| Parameter Identification<br>Control Mode | Applicable Occasions                                                                                            | Identification<br>Effect |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------|
| Static Identification                    | Only applicable for occasions not convenient to separate the motor and rotating system from asynchronous motor  | Worse                    |
| Complete Identification                  | Only applicable for occasions able to completely separate the motor and rotating system from asynchronous motor | Best                     |

As for the occasions hard to separate the asynchronous motor and rotating system, the motor with same brand and type can be used, after complete identification, the parameters for properties of the motor are copied to corresponding parameter of P0.0.19~P0.0.23.

| Function code | Function name                    | Setting scope              | Factory Value |
|---------------|----------------------------------|----------------------------|---------------|
|               |                                  | 0: No action               |               |
| P0.024        | Parameter Identification Control | 1: Static identification   | 0             |
|               |                                  | 2: Complete identification |               |

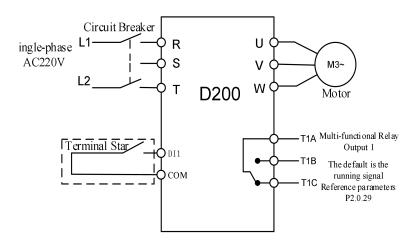
### 0: No Action

When the frequency inverter is under normal operating state, the parameter identification is not required to be done.

1: Static Identification

When the load cannot completely separate from the asynchronous motor, this mode can be adopted. Before conducting the identification, the parameter value of P0.0.13~P0.0.18 must be set correctly. After completing the setting and pressing Key RUN, the frequency inverter operates the static identification, the completion of the identification only can acquire three parameter values of P0.0.19~P0.0.21.

2: Complete Identification


When the load completely separates from the asynchronous motor, this mode can be adopted (if the conditions allow, please try to adopt this mode, for it has better effect). Before conducting the identification, the parameter value of P0.0.13~P0.0.18 must be set correctly. After completing the setting and pressing Key RUN, the frequency inverter operates the complete identification, the completion of the identification only can acquire five parameter values of P0.0.19~P0.0.23.

### **Steps for Motor Parameter Identification:**

- 1. If the motor can completely separate from the load, please confirm its state and the motor cannot influence other related devices when the motor is rotating.
- 2. After power-on, please confirm that the Parameter P0.0.13~P0.0.18 of the frequency inverter is the same with corresponding parameter on the nameplate of the motor.
- 3. Please confirm that when the running control mode of the frequency inverter is at P0.0.03=0, the panel control is adopted (i.e. only Key RUN on the control panel can identify the running signal).
- 4. Set Function Code P0.0.24 and select the mode of parameter identification. If the Complete Identification is selected, the Function Code is at P0.0.24=2, press Key "ENTER" and then press Key "RUN", the keyboard displays "FE5F", the indicator of "RUN" lights on and the indicator of "TUNE" keeps flashing. The parameter identification continues running about 30s~60s, when the display of "FE5F" disappears, the indicator of "TUNE" lights off, such a condition means the end of parameter identification, the frequency inverter can automatically store the identified the characteristic parameters of the motor into corresponding function code.

### 7.2 Application case

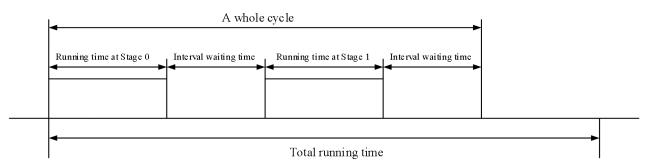
### 7.2.1 Ball mill



### General parameters of ball mill (Before debugging of ball mill is started, please input 102 into P5.0.19)

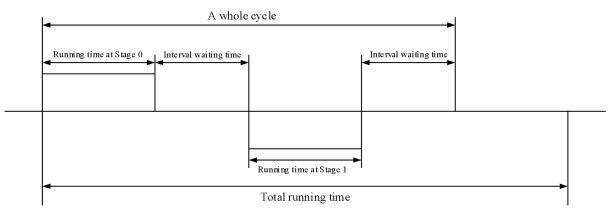
| Function code | Function Name                     | Setting scope                             | Factory Value   |  |  |
|---------------|-----------------------------------|-------------------------------------------|-----------------|--|--|
|               |                                   | 0: Primary mode (prefix is 'P')           |                 |  |  |
| P0.0.01       | Display mode                      | 1: User mode (prefix is 'U')              | 1               |  |  |
|               |                                   | 0: Check mode (prefix is 'C')             |                 |  |  |
| P0.0.02       | Control mode method               | 0: V/F control                            | 0               |  |  |
|               | Duraning control                  | 0: Keyboard control                       |                 |  |  |
| P0.0.03       | Running control<br>Mode selection | 1: Terminal control                       | 0               |  |  |
|               | Node selection                    | 2: Communication control                  |                 |  |  |
| P0.011        | Acceleration time                 | 0000.0~6500.0s                            | Machine type    |  |  |
| P0.012        | Deceleration time                 | 0000.0~6500.0s                            | Machine type    |  |  |
| P0.016        | Timing arrival deceleration       | 0000.0~6500.0s                            | Machine type    |  |  |
| 10.010        | time                              |                                           | Widefinite type |  |  |
|               |                                   | 0: End of Single Running and Stop         |                 |  |  |
|               |                                   | 1: End of Single Running and Save Final   |                 |  |  |
| P3.0.00       | Cycle running mode                | Value                                     | 2               |  |  |
|               |                                   | 2: Continuous Running                     |                 |  |  |
|               |                                   | 3: Cycle N Times                          |                 |  |  |
| P3.0.01       | Cycle time                        | 00000~65000                               | 00000           |  |  |
|               |                                   | Ones: Option of Power-off Memory          |                 |  |  |
|               |                                   | 0: No Power-off Memory                    |                 |  |  |
| P3.0.02       | Option of PLC Power-off           | -off 1: Memory for shutdown and power-off |                 |  |  |
| F 3.0.02      | Memory                            | Tens: Stop Memory Selection               | 00              |  |  |
|               |                                   | 0: No Stop Memory                         |                 |  |  |
|               |                                   | 1: Stop Memory                            |                 |  |  |

Chapter 7 Common Function and Application Case


| Function code  | Function Name                          | Setting scope                               | Factory Value |  |
|----------------|----------------------------------------|---------------------------------------------|---------------|--|
| P3.0.04        | Stage 0 running time                   | $0000.0 { m s}{\sim}6500.0 { m s}$          | 100.0         |  |
| P3.0.06        | Stage 1 running time                   | 0000.0s~6500.0s                             | 100.0         |  |
| P3.0.35        | Staga 0 minning time                   | H.010: Default direction                    | H.010         |  |
| P3.0.33        | Stage 0 running time                   | H.110: Reversed direction                   | H.010         |  |
| P3.0.36        | Stage 1 running time                   | H.010: Default direction                    | H.010         |  |
| 15.0.50        |                                        | H.110: Reversed direction                   | 11.010        |  |
|                |                                        | 0: seconds                                  |               |  |
| P3.0.51        | Timing operation Control               | 1: Hour                                     | 2             |  |
|                |                                        | 2: Minute                                   |               |  |
| D2 2 11        | Timing 4200: No timing                 |                                             | 4200          |  |
| P3.2.11        | Timing running control                 | 4239: Timing                                | 4200          |  |
| P3.2.17        | Interval stand-by time                 | 0.0~3600.0s                                 | 0000          |  |
| P3.2.24        | Total running time                     | 0.0~3600.0m                                 | 1000.0        |  |
| P5.0.15        | Customized display coefficient         | 0.0001~6.5000                               | 0.288         |  |
|                |                                        | 00: No action                               |               |  |
| <b>D5</b> 0 10 | 30: Backup of user's present parameter |                                             | 00            |  |
| P5.0.19        | Recover default value                  | 60: Recover user's backup parameter         | 00            |  |
|                |                                        | 102: Recover factory parameter of ball mill |               |  |

Description:

- 1. This system can both realize auto-stop via cycle time and timing.
- 2. When the user mode is adopted (P0.0.01=1), only the above parameters are displayed, other parameters will be shielded.
- 3. If the direction of stage 0 and stage 1 is uniform, it'll mean one-way running, if direction is on the contrary, it'll mean alternate running (see Sketch).
- 4. If vector control is adopted, refer to the Manual for motor parameter setting and parameter identification (V/F control is adopted by default).


### Description of system running sketch

Uniform running direction of stage 0 and stage 1



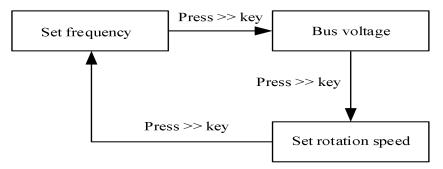
If the running with no timing is adopted, the system will run cycle by cycle until stop command is given. If the running with timing is adopted, the system will stop freely when reaching the total running time.

The running direction of stage 0 and stage 1 is reverse.

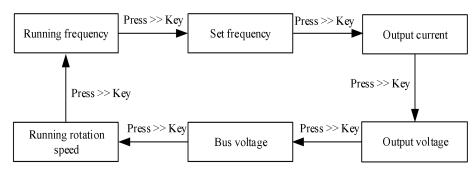


If the running with no timing is adopted, the system will run cycle by cycle until stop command is given. If the running with timing is adopted, the system will stop freely when reaching the total running time.

### Method of displaying rotation speed


If the user requires displaying rotation speed, set the customized display coefficient into P5.0.15 according to the result of computing formula below, then press >> key, when the indicators of V, A and Hz are all OFF, it'll be rotation speed.

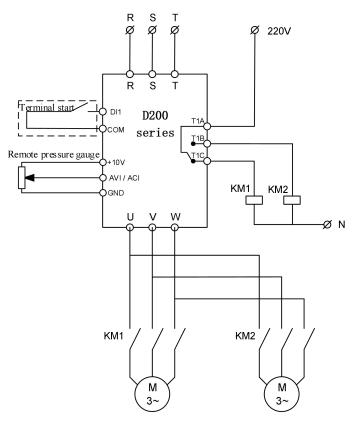
Customized display coefficient = rated speed/(rated frequency \* 100)/transmission ratio


For instance, if the rated speed of motor is 1440rpm, the rated frequency is 50.00Hz, and the equipment transmission ratio is 2, then

Customized display coefficient = 1440/(50.00\*100)/2=0.144

### Monitoring content under stop state




### Monitoring content under running state:



### Manufacturer parameter (used for built-in function calling, modification is forbidden)

| Function code | Setting value | Function code | Setting value | Function code | Setting value |
|---------------|---------------|---------------|---------------|---------------|---------------|
| P0.0.04       | 7             | P3.2.09       | 0048          | P3.2.04       | 21113         |
| P3.2.00       | 21112         | P3.2.05       | 121           | P5.0.05       | H.0203        |
| P3.2.07       | 3914          | P3.2.10       | 0050          | P5.0.02       | H081F         |
| P3.2.03       | 00100         | P3.2.23       | 10001         |               |               |
| P3.2.18       | 1.0           | P3.0.51       | 2             |               |               |

### 7.2.2 Dual Pump Switch Function



Common Parameters of Dual Pump Function (please enter 100 to P5.0.19 before user has debugging of dual pump function)

| Function<br>Code | Name                              | Set<br>Value | Description                                                                   |
|------------------|-----------------------------------|--------------|-------------------------------------------------------------------------------|
| P0.0.03          | Selection of running control      | 0            | Start via RUN key on panel (default)                                          |
| P0.0.05          | method                            | 1            | Start via external terminal DI1 (P2.0.00=01)                                  |
| P0.0.11          | Acceleration time                 | 20.0         |                                                                               |
| P0.0.12          | Deceleration time                 | 20.0         | P3.2.13 needs adjustment after modification of this parameter                 |
|                  |                                   | 0            | Shutdown after completion of single running                                   |
| P3.0.00          | Running mode of simplified        | 1            | Maintain final value after completion of single running                       |
| P3.0.00          | PLC                               | 2            | Continuous cycle (default)                                                    |
|                  |                                   | 3            | Cycle for N times                                                             |
| P3.0.01          | Cycle times N                     | 0            | Cycle switch times of dual pumps when P3.0.00=3                               |
| P3.0.02          | Selection of PLC power-off memory | 11           | Support memory in case of shutdown and power-off                              |
| P3.2.13          | Pump switch time point            | 22.0s        | This set value should be higher than the actual deceleration time of inverter |
| P3.2.17          | Restart time point                | 24.0s        | This set value is higher than the set value of P3.2.13                        |
| P3.0.04          | Pump 1 running period             | 24.0         | Running period of Pump 1                                                      |
| P3.0.06          | Pump 2 running period             | 24.0         | Running period of Pump 2                                                      |
|                  |                                   | H.010        | Decided by keyboard potentiometer (default)                                   |
|                  |                                   | H.020        | Given by keyboard frequency                                                   |
| P3.0.35          | Pump 1 frequency source           | H.030        | AVI input                                                                     |
|                  |                                   | H.040        | ACI input                                                                     |
|                  |                                   | H.060        | Given by PID                                                                  |
|                  |                                   | H.010        | Decided by keyboard potentiometer (default)                                   |
| P3.0.36          | Pump 2 frequency source           | H.020        | Given by keyboard frequency                                                   |
|                  |                                   | H.030        | AVI input                                                                     |

Chapter 7 Common Function and Application Case

|         |                             |       | 1 11                                             |
|---------|-----------------------------|-------|--------------------------------------------------|
|         |                             | H.040 | ACI input                                        |
|         |                             | H.060 | Given by PID                                     |
| P4.0.01 | PID set value               | 50.0% | Given by PID value (given pressure)              |
|         |                             | 0     | Second                                           |
| P3.0.51 | Unit of pump running period | 1     | Hour                                             |
|         |                             | 2     | Minute                                           |
|         |                             | 00    | No operation                                     |
|         |                             | 09    | Recover default value                            |
| P5.0.19 | Recover default value       | 30    | Backup user's current parameter                  |
|         |                             | 60    | Recover user backup parameters                   |
|         |                             | 100   | Recover default parameters of dual pump function |

### 1. Explanation for D200 series frequency inverter RS-485 Communication Terminal

D200 series inverter control board has its own RS-485 communication terminal.

SG+: 485 Signal Positive

SG-: 485 Signal Negative

### 2. Explanation for D200 series frequency inverter Communication Parameter

"The RS-485 communication terminal isn't equipped. The external communication expansion card must be connected to realize communication. The "Baud Rate", "Data Format" and "Communication Address" of frequency inverter must be set via the keyboard.

| Function Code | Function Name     | Setting Scope                  | Factory Value |  |  |
|---------------|-------------------|--------------------------------|---------------|--|--|
|               |                   | Ones: 0: 1200                  |               |  |  |
|               |                   | 1: 2400                        |               |  |  |
|               |                   | 2: 4800                        |               |  |  |
| P4.1.00       | Baud Rate         | 3: 9600                        | 03            |  |  |
|               |                   | 4: 19200                       |               |  |  |
|               |                   | 5: 38400                       |               |  |  |
|               |                   | 6: 57600                       |               |  |  |
|               |                   | 0: No Check (8-N-2)            |               |  |  |
| D4 1 01       | Data Format       | 1: Even Parity Check (8-E-1)   |               |  |  |
| P4.1.01       |                   | 2: Odd Parity Check (8-O-1)    | 0             |  |  |
|               |                   | 3: No Check (8-N-1)            |               |  |  |
| D4 1 02       | Local Machine     | 000 is Broadcast Address       | 1             |  |  |
| P4.1.02       | Address           | 001~249                        | 1             |  |  |
| P4.1.03       | Response Delay    | $0ms \sim 20ms$                | 2             |  |  |
| D4 1 04       | Communication     | 0.0(Invalid)                   | 0.0           |  |  |
| P4.1.04       | Timeout           | $0.1s \sim 60.0s$              | 0.0           |  |  |
| D4 1 05       | Data Transmission | Ones: 0: ASCII mode (Reserved) | 01            |  |  |
| P4.1.05       | Format            | 1: RTU mode                    | 01            |  |  |

Response Delay: when the frequency inverter receives the data and after the time set by Function Code P4.1.03 is delayed, the frequency inverter starts recovering the data.

Communication Timeout: the interval between data frames received by the frequency inverter is over the time set by Function Code P4.1.04, the frequency inverter gives an alarm of Fault Err14, it is deemed as abnormal communication. If it is set at 0.0, the communication timeout is invalid.

### 3. Description for Standard MODBUS Communication Format

# 3.1 String Structure

# (8-N-2, P4.1.01=0)

|                                       | ×   | 50 | 370      | 7.0                |           |               | x                |          | N                    |                      |
|---------------------------------------|-----|----|----------|--------------------|-----------|---------------|------------------|----------|----------------------|----------------------|
| Start bit                             | 0   | 1  | 2        | 3                  | 4         | 5             | 6                | 7        | Stop bit             | Stop bit             |
|                                       | <   |    |          |                    |           | . ,,          |                  | ,        | <del>،</del> ۲       |                      |
| Start Bit                             |     |    |          | Dat                | a Bit     |               |                  |          | Stop Bit             | Stop Bit             |
| 3-E-1, P4.1.01                        | =1) |    |          |                    |           | 545           |                  | 6        | a                    |                      |
| Start bit                             | 0   | 1  | 2        | 3                  | 4         | 5             | 6                | 7        | Even parity          | Stop bit             |
|                                       | *   |    |          | 20                 | <u>20</u> | 664 - 10<br>1 |                  |          |                      |                      |
| Start Bit                             |     |    | Data Bit |                    |           |               |                  |          | Even Parity<br>Check | Stop Bit             |
|                                       |     |    |          |                    |           |               |                  |          | CHECK                |                      |
| 8-0-1, P4.1.01                        | =2) |    |          |                    |           |               |                  |          | Check                |                      |
| 8-0-1, P4.1.01<br>Start bit           | =2) | 1  | 2        | 3                  | 4         | 5             | 6                | 7        | Odd parity           | Stop bit             |
| and a second second                   |     | 1  | 2        | 3                  | 4         | 5             | 6                | 7        | 1                    | Stop bit             |
| an automatic and a state of the state |     | 1  |          | <b>3</b><br>Data I | 1         | 5             | 6                | 7        | 1                    | Stop bit<br>Stop Bit |
| Start bit<br>Start Bit                | 0   | 1  |          |                    | 1         | 5             | 6                | 7        | Odd parity           | (                    |
| Start bit<br>Start Bit                | 0   |    |          | Data I             | 1         |               | <b>6</b><br>Stop | ,        | Odd parity           | (                    |
| Start Bit<br>8-N-1, P4.1.01           | =3) | 2  | ]        | Data I             | Bit       | 7             |                  | ,<br>pit | Odd parity           | Stop bit<br>Stop Bit |

| can't respond message (broadcast mode)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.2 Communi | cation Data Structure                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------|
| ADRNote: When the address is ADR=000H, it is valid for all slave machines and all slave machines<br>can't respond message (broadcast mode)CMDFunction Code of Data Package (06: write the contents of a register; 03: read out the contents of<br>one or more than one register(s)) (8-digit hexadecimal number)ADRESSSending of Host Machine: when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 03, it means data initial address (16-digit<br>hexadecimal number)ADRESSSlave Station Responds: refer to data address when at function code 06 (16-digit hexadecimal<br>number); refer to data number when at function code 03 (8-digit hexadecimal number)DATASending of Host Machine: when at Function Code 03, it means data address (16-digit<br>hexadecimal number); when at Function Code 03, it means data address (16-digit<br>hexadecimal number)DATASlave Station Responds: when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 06, it means data address (16-digit<br>hexadecimal number); slave Station Responds: when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 03, it means data address (16-digit<br>hexadecimal number); when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 03, it means data address (16-digit<br>hexadecimal number); when at Function Code 03, it means data initial address (16-digit<br>hexadecimal number); when at Function Code 03, it means data initial address (16-digit<br>hexadecimal number); when at Function                                              |             | Slave Machine (Frequency inverter) Address                                                        |
| Note: When the address is ADR=000H, it is valid for all slave machines and all slave machines<br>can't respond message (broadcast mode)CMDFunction Code of Data Package (06: write the contents of a register; 03: read out the contents of<br>one or more than one register(s)) (8-digit hexadecimal number)ADRESSSending of Host Machine: when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 03, it means data initial address (16-digit<br>hexadecimal number)Slave Station Responds: refer to data address when at function code 06 (16-digit hexadecimal<br>number); refer to data number when at function code 03 (8-digit hexadecimal number)DATASending of Host Machine: when at Function Code 03, it means data address (16-digit<br>hexadecimal number); when at Function Code 03, it means data address (16-digit<br>hexadecimal number); solution code 03, it means data address (16-digit<br>hexadecimal number); when at Function Code 03, it means data address (16-digit<br>hexadecimal number); when at Function Code 03, it means data address (16-digit<br>hexadecimal number); when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 03, it means data address (16-digit<br>hexadecimal number); when at Function Code 03, it means data initial address (16-digit<br>hexadecimal number); when at Function Code 03, it means data initial address (16-digit<br>hexadecimal number); when at Function Code 03, it means data initia |             | The address scope of the frequency inverter is (001~249), (8-digit hexadecimal number)            |
| CMDFunction Code of Data Package (06: write the contents of a register; 03: read out the contents of<br>one or more than one register(s)) (8-digit hexadecimal number)ADRESSSending of Host Machine: when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 03, it means data initial address (16-digit<br>hexadecimal number)ADRESSSending of Host Machine: when at Function Code 03, it means data initial address (16-digit<br>hexadecimal number)Slave Station Responds: refer to data address when at function code 06 (16-digit hexadecimal<br>number); refer to data number when at function code 03 (8-digit hexadecimal number)Sending of Host Machine: when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 03, it means data address (16-digit<br>hexadecimal number); when at Function Code 03, it means data address (16-digit<br>hexadecimal number)DATASave Station Responds: when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 06, it means data address (16-digit<br>hexadecimal number); such at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 03, it means data address (16-digit<br>hexadecimal number); when at Function Code 03, it means data initial address (16-digit<br>hexadecimal number); when at Function Code 03, it means data initial address (16-digit<br>hexadecimal number); when at Function Code 03, it means data initial address (16-digit<br>hexadecimal number); when at Function Code 03, it means data initial address (16-digit                                                                                                                                                                                                               | ADK         | Note: When the address is ADR=000H, it is valid for all slave machines and all slave machines     |
| CMDone or more than one register(s)) (8-digit hexadecimal number)Sending of Host Machine: when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 03, it means data initial address (16-digit<br>hexadecimal number)ADRESSSlave Station Responds: refer to data address when at function code 06 (16-digit hexadecimal<br>number); refer to data number when at function code 03 (8-digit hexadecimal number)Sending of Host Machine: when at Function Code 03, it means data address (16-digit<br>hexadecimal number); when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 03, it means data address (16-digit<br>hexadecimal number); slave Station Responds: when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 03, it means data address (16-digit<br>hexadecimal number); when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 03, it means data address (16-digit<br>hexadecimal number); when at Function Code 03, it means data address (16-digit<br>hexadecimal number); when at Function Code 03, it means data address (16-digit<br>hexadecimal number); when at Function Code 03, it means data initial address (16-digit                                                                                                                                                                                                              |             | can't respond message (broadcast mode)                                                            |
| one or more than one register(s)) (8-digit hexadecimal number)Sending of Host Machine: when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 03, it means data initial address (16-digit<br>hexadecimal number)ADRESSSlave Station Responds: refer to data address when at function code 06 (16-digit hexadecimal<br>number); refer to data number when at function code 03 (8-digit hexadecimal number)Sending of Host Machine: when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 03, it means data address (16-digit<br>hexadecimal number); when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 03, it means data initial address (16-digit<br>hexadecimal number); when at Function Code 03, it means data initial address (16-digit<br>hexadecimal number); when at Function Code 03, it means data initial address (16-digit<br>hexadecimal number); when at Function Code 03, it means data initial address (16-digit<br>hexadecimal number); when at Function Code 03, it means data initial address (16-digit<br>hexadecimal number); when at Function Code 03, it means data initial address (16-digit                                                                                                                                                                                                 | CMD         | Function Code of Data Package (06: write the contents of a register; 03: read out the contents of |
| ADRESShexadecimal number); when at Function Code 03, it means data initial address (16-digit<br>hexadecimal number)<br>Slave Station Responds: refer to data address when at function code 06 (16-digit hexadecimal<br>number); refer to data number when at function code 03 (8-digit hexadecimal number)DATASending of Host Machine: when at Function Code 03, it means data initial address (16-digit<br>hexadecimal number); when at Function Code 03, it means data address (16-digit<br>hexadecimal number)DATASlave Station Responds: when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 06, it means data address (16-digit<br>hexadecimal number)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CMD         | one or more than one register(s)) (8-digit hexadecimal number)                                    |
| ADRESShexadecimal number)Slave Station Responds: refer to data address when at function code 06 (16-digit hexadecimal<br>number); refer to data number when at function code 03 (8-digit hexadecimal number)Sending of Host Machine: when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 03, it means data initial address (16-digit<br>hexadecimal number)DATASlave Station Responds: when at Function Code 06, it means data address (16-digit<br>hexadecimal number)Slave Station Responds: when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 03, it means data address (16-digit<br>hexadecimal number); when at Function Code 03, it means data address (16-digit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | Sending of Host Machine: when at Function Code 06, it means data address (16-digit                |
| Slave Station Responds: refer to data address when at function code 06 (16-digit hexadecimal<br>number); refer to data number when at function code 03 (8-digit hexadecimal number)Sending of Host Machine: when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 03, it means data initial address (16-digit<br>hexadecimal number)DATASlave Station Responds: when at Function Code 06, it means data address (16-digit<br>hexadecimal number)Slave Station Responds: when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 03, it means data address (16-digit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | hexadecimal number); when at Function Code 03, it means data initial address (16-digit            |
| number); refer to data number when at function code 03 (8-digit hexadecimal number)Sending of Host Machine: when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 03, it means data initial address (16-digit<br>hexadecimal number)DATASlave Station Responds: when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 06, it means data address (16-digit<br>hexadecimal number)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ADRESS      | hexadecimal number)                                                                               |
| DATASending of Host Machine: when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 03, it means data initial address (16-digit<br>hexadecimal number)<br>Slave Station Responds: when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 03, it means data initial address (16-digit<br>hexadecimal number); when at Function Code 03, it means data initial address (16-digit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | Slave Station Responds: refer to data address when at function code 06 (16-digit hexadecimal      |
| DATA hexadecimal number); when at Function Code 03, it means data initial address (16-digit<br>hexadecimal number)<br>Slave Station Responds: when at Function Code 06, it means data address (16-digit<br>hexadecimal number); when at Function Code 03, it means data initial address (16-digit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | number); refer to data number when at function code 03 (8-digit hexadecimal number)               |
| DATA hexadecimal number)<br>Slave Station Responds: when at Function Code 06, it means data address (16-digit hexadecimal number); when at Function Code 03, it means data initial address (16-digit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | Sending of Host Machine: when at Function Code 06, it means data address (16-digit                |
| Slave Station Responds: when at Function Code 06, it means data address (16-digit hexadecimal number); when at Function Code 03, it means data initial address (16-digit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | hexadecimal number); when at Function Code 03, it means data initial address (16-digit            |
| hexadecimal number); when at Function Code 03, it means data initial address (16-digit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DATA        | hexadecimal number)                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | hexadecimal number); when at Function Code 03, it means data initial address (16-digit            |
| CRC CHK (CHECKSUM) (16-digit hexadecimal number)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CRC         | CHK (CHECKSUM) (16-digit hexadecimal number)                                                      |

RTU adopts CRC CHK (CHECKSUM), which is calculated as the following steps:

Step 1: Load 16-digit register with content of FFFFH (CRC Register).

Step 2: Conduct XOR operation for the first byte of the communication data and the contents of CRC Register and store the results into CRC Register.

Step 3: Move 1bit of the contents of CRC Register to the minimum significant bit and fill in 0 to the maximum significant bit, and check the minimum significant bit of CRC Register.

Step 4: If the minimum significant bit is 1, the CRC Register and preset value conduct XOR operation. If the minimum significant bit is 0, no action is taken.

Step 5: After repeat 8 times of Step 3 and 4, the handling to this byte is finished.

Step 6: Repeat Step 2-5 for next byte of the communication data until the handling to all bytes are completed, the final content of CRC Register is the value of CRC. When transmitting CRC Value, first add the low byte and then high byte, that is, the low byte is first transmitted.

| ADRESS | DATA | Description                     | ADRESS | DATA | Description                          |  |  |  |
|--------|------|---------------------------------|--------|------|--------------------------------------|--|--|--|
| FF01   | 0001 | Invalid address                 | FF01   | 0005 | Invalid parameter                    |  |  |  |
| FF01   | 0002 | CRC Check Error                 | FF01   | 0006 | Invalid Modification to<br>Parameter |  |  |  |
| FF01   | 0003 | Read and Write Command<br>Error | FF01   | 0007 | System Lock                          |  |  |  |
| FF01   | 0004 | Password Error                  | FF01   | 0008 | Parameter under Storage              |  |  |  |

In case of any fault of the communication, the slave machine responds the data of ADRESS and DATA as below:

The master station writes the command string format:

| Name of<br>Character   | Slave Station | Write Command<br>06H | Function Code<br>Address | Data content | CRC Check |
|------------------------|---------------|----------------------|--------------------------|--------------|-----------|
| Length of<br>Character | 1Byte         | 1Byte                | 2Byte                    | 2Byte        | 2Byte     |
| Example                | 01H           | 06 H                 | 0005 H                   | 1388H        | 949DH     |

The slave station responds the command string format:

| Name of<br>Character   | Slave Station | Write Command<br>06H | Function Code<br>Address | Data content | CRC Check |
|------------------------|---------------|----------------------|--------------------------|--------------|-----------|
| Length of<br>Character | 1Byte         | 1Byte                | 2Byte                    | 2Byte        | 2Byte     |
| Example                | 01H           | 06H                  | 0005H                    | 1388H        | 949DH     |

The master station reads the command string format:

| Name of   | Slave Station | Read Command | Initial Address of | Data content | CRC Check |
|-----------|---------------|--------------|--------------------|--------------|-----------|
| Character | Slave Station | 03H          | Function Code      | Data content | CKC Check |
| Length of | 1 Duto        | 1Dvto        | 2Puto              | 2Puto        | 2Duto     |
| Character | 1Byte         | 1Byte        | 2Byte              | 2Byte        | 2Byte     |
| Example   | 01H           | 03 H         | 9000 H             | 0003H        | 28CBH     |

The slave station responds the read command string format:

| Name of<br>Character   | Slave<br>Station | Read<br>Command<br>03H | Data<br>content | Data<br>content 1 | Data<br>content 2 | Data<br>content 3 | CRC<br>Check |
|------------------------|------------------|------------------------|-----------------|-------------------|-------------------|-------------------|--------------|
| Length of<br>Character | 1Byte            | 1Byte                  | 1Byte           | 2Byte             | 2Byte             | 2Byte             | 2Byte        |
| Example                | 01H              | 03 H                   | 06H             | 0000H             | 0000H             | 0000H             | 2175H        |

The slave station responds the write command error string format:

| Name of                | Classe Station | Slave Station Write Command Read |            | Read and Write | CDC Chash |
|------------------------|----------------|----------------------------------|------------|----------------|-----------|
| Character              | Slave Station  | 06H                              | Error Mark | Error Type     | CRC Check |
| Length of<br>Character | 1Byte          | 1Byte                            | 2Byte      | 2Byte          | 2Byte     |
| Example                | 01H            | 03 H                             | FF01 H     | 0005H          | 281DH     |

|                        | 1                                         |       |                |                |           |  |
|------------------------|-------------------------------------------|-------|----------------|----------------|-----------|--|
| Name of                | Slave Station Read Command Read and Write |       | Read and Write | Read and Write | CRC Check |  |
| Character              | Slave Station                             | 03H   | Error Mark     | Error Type     | CKC CHECK |  |
| Length of<br>Character | 1Byte                                     | 1Byte | 2Byte          | 2Byte          | 2Byte     |  |
| Example                | 01H                                       | 03 H  | FF01H          | 0005H          | E41DH     |  |

The slave station responds the read command error string format:

### 4. Definition for Parameter Address of Communication Protocol

The D200 series frequency inverter not only has many multifunctional function code parameters, but some nonmultifunctional function code parameters. Specific read and write properties are as below:

| Function Code Denometer | P1~P8                                    | Readable, writable |
|-------------------------|------------------------------------------|--------------------|
| Function Code Parameter | Р9                                       | Only Readable      |
| Non-function Code       | A000H, A001H, A002H, A003H, A010H, A011H | Only writable      |
| Parameter               | В000Н, В001Н                             | Only Readable      |

### Explanation for Read and Write Address of Function Code Parameters:

The group and level of function code parameters are used to form the high position of the parameter address, and the sequence number is used to form the low position of the parameter address.

Converts the high-order address of the parameter address as a hexadecimal number and the low-order address as a decimal number to a hexadecimal number. The higher-order and lower-order addresses are then combined into a 4-bit hexadecimal number.

For example P2.1.12

The high-order address is 21 in hexadecimal. The low address is 12 in decimal and is converted to 0C in hexadecimal. So the address is denoted as 0x210C.

Table of Definitions for Non-functional Function Code Parameter Address

| Definition         | Function<br>Code | Parameter<br>Address | Descri                                                    | ption for Function          |  |
|--------------------|------------------|----------------------|-----------------------------------------------------------|-----------------------------|--|
|                    |                  |                      | 0001H                                                     | Forward Run                 |  |
|                    |                  |                      | 0002H                                                     | Reverse Run                 |  |
|                    |                  |                      | 0003H                                                     | Forward Jogging             |  |
|                    |                  | A000H                | 0004H                                                     | Reverse Jogging             |  |
|                    |                  |                      | 0005H                                                     | Free Stop                   |  |
|                    |                  |                      | 0006Н                                                     | Shutdown By Speed Reduction |  |
|                    | 06H              |                      | 0007H                                                     | Fault Rest                  |  |
|                    |                  | A001H                | Frequency Command or Upper Frequency Source (refer        |                             |  |
| Command to         |                  |                      | to the percentage of the highest frequency without        |                             |  |
| frequency inverter | 0011             |                      | storage) (00.00~100.00 indicates 00.00%~100.00%)          |                             |  |
|                    |                  | A002H                | BIT2                                                      | T1 relay                    |  |
|                    |                  |                      | If it is required to make T1 relay signal valid, set      |                             |  |
|                    |                  |                      | corresponding position to 1, after transfer binary system |                             |  |
|                    |                  |                      | to hexadecimal system, send it to address A002.           |                             |  |
|                    |                  | A003H                | FM1 Output Address                                        |                             |  |
|                    |                  | A00511               | (00.0~100.0 indicates 00.0%~100.0%)                       |                             |  |
|                    |                  | A010H                | PID Reference Value                                       |                             |  |
|                    |                  | A011H                | PID Feedback Value                                        |                             |  |

| Definition         | Function<br>Code | Parameter<br>Address | Description for Function |             |
|--------------------|------------------|----------------------|--------------------------|-------------|
| Running status of  |                  |                      | 0001H                    | Forward Run |
| monitoring         | 03H              | B000H                | 0002H                    | Reverse Run |
| frequency inverter |                  |                      | 0003H                    | Stop        |

### Table of Definitions for Non-functional Function Code Parameter Address

| Definition    | Function Code | Parameter<br>Address |    | Description for Function           |
|---------------|---------------|----------------------|----|------------------------------------|
|               |               |                      | 00 | No fault                           |
|               |               |                      | 01 | Over-current at constant speed     |
|               |               |                      | 02 | Over-current at acceleration       |
|               |               |                      | 03 | Over-current at deceleration       |
|               |               |                      | 04 | Over-voltage at constant speed     |
|               |               |                      | 05 | Over-voltage at acceleration       |
|               |               |                      | 06 | Over-voltage at deceleration       |
|               |               |                      | 07 | Module Fault                       |
|               |               |                      | 08 | Under-voltage                      |
|               |               |                      | 09 | Frequency inverter Overload        |
|               |               |                      | 10 | Motor Overload                     |
|               | 0211          | Decity               | 11 | Input Default Phase                |
|               |               |                      | 12 | Output Default Phase               |
|               |               |                      | 13 | External Fault                     |
| Monitoring to |               |                      | 14 | Abnormal Communication             |
| Fault of      |               |                      | 15 | Frequency inverter Overheat        |
| Frequency     | 03H           | B001H                | 17 | Motor Earthing Short Circuit       |
| inverter      |               |                      | 18 | Motor Identification Error         |
|               |               |                      | 19 | Motor Off-load                     |
|               |               |                      | 20 | PID Feedback Loss                  |
|               |               |                      | 21 | User-Defined Fault 1               |
|               |               |                      | 22 | User-Defined Fault 2               |
|               |               |                      | 23 | Accumulative Power-on Time Arrival |
|               |               |                      | 24 | Accumulative Running Time Arrival  |
|               |               |                      | 26 | Parameter Read-Write Abnormity     |
|               |               |                      | 27 | Motor Overheat                     |
|               |               |                      | 31 | Current Detection Fault            |
|               |               |                      | 33 | Abnormity of Current Detection     |
|               |               |                      | 34 | Fast Current-limiting Timeout      |
|               |               |                      | 38 | Output short circuit               |
|               |               |                      | 40 | Buffer resistance fault            |
|               |               |                      | 54 | Internal communication is abnormal |

### 5. Example

Example 1: Forward Start No.1 Frequency Inverter

| The host machine sends data package |     |  |  |  |
|-------------------------------------|-----|--|--|--|
| ADR                                 | 01H |  |  |  |
| CMD                                 | 06H |  |  |  |
| ADRESS                              | A0H |  |  |  |
|                                     | 00H |  |  |  |
| DATA                                | 00H |  |  |  |
| DATA                                | 01H |  |  |  |
| CRC                                 | 6AH |  |  |  |
| CKU                                 | 0AH |  |  |  |

| The slave machine responds the data package |     |  |  |  |
|---------------------------------------------|-----|--|--|--|
| ADR                                         | 01H |  |  |  |
| CMD                                         | 06H |  |  |  |
| ADRESS                                      | A0H |  |  |  |
|                                             | 00H |  |  |  |
| DATA                                        | 00H |  |  |  |
| DATA                                        | 01H |  |  |  |
| CRC                                         | 6AH |  |  |  |
|                                             | 0AH |  |  |  |

Example 2: Reference No.1 Frequency inverter Frequency (Not store)

The frequency value of Reference 1# Frequency inverter is the highest frequency 100.00%.

Methods are as below: after removal of the decimal point of 100.00, it is 10000D=2710H.

| The host machine sends data package |     | Respond the data package |        |     |
|-------------------------------------|-----|--------------------------|--------|-----|
| ADR                                 | 01H |                          | ADR    | 01H |
| CMD                                 | 06H |                          | CMD    | 06H |
| ADRESS                              | A0H |                          | ADRESS | A0H |
| ADRESS                              | 01H |                          | ADKE55 | 01H |
| DATA                                | 27H |                          | DATA   | 27H |
| DATA                                | 10H | DATA                     |        | 10H |
| CDC                                 | E0H |                          | CDC    | E0H |
| CRC                                 | 36H |                          | CRC    | 36H |

Example 3: Inquire the running frequency of No.1 Frequency inverter Frequency

In running state, inquire the "Output Frequency" of the Frequency inverter 1#

Methods are as below: the Function Code Parameter No. of the output frequency is P9.0.00, after conversion into address, it is 9000H.

If the "Output Frequency" of the Frequency inverter 1# is 50.00Hz, it is 5000D=1388H

The host machine sends data package

| ADR    | 01H |
|--------|-----|
| CMD    | 03H |
| ADRESS | 90H |
| ADRESS | 00H |
|        | 00H |
| DATA   | 01H |
| CRC    | A9H |
|        | 0AH |

The slave machine responds the data package

| The shave machine responds the data package |     |  |  |  |  |
|---------------------------------------------|-----|--|--|--|--|
| ADR                                         | 01H |  |  |  |  |
| CMD                                         | 03H |  |  |  |  |
| ADRESS                                      | 02H |  |  |  |  |
|                                             | 13H |  |  |  |  |
| DATA                                        | 88H |  |  |  |  |
| CRC                                         | B5H |  |  |  |  |
| CKC                                         | 12H |  |  |  |  |

# **Chapter 9 Fault Handling**

# 9.1 Frequency inverter Fault and Exclusion Measure

| Fault display | Description                          | Details                                                                                                                                                                                        | Fault elimination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Err00         | No Fault                             |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Err01         | Over-current<br>at constant<br>speed | The output current exceeds the<br>over-current value while the<br>frequency inverter is running at a<br>constant speed                                                                         | <ul> <li>Check whether the output circuit of the frequency inverter has short circuit;</li> <li>Check whether the input voltage is relatively low;</li> <li>Check whether the load has mutation;</li> <li>Conduct parameter identification or improve low frequency torque compensation;</li> <li>Check whether the rated power of the motor or frequency inverter is large enough;</li> </ul>                                                                                                                                                           |
| Err02         | Over-current<br>at acceleration      | When the frequency inverter<br>accelerates, output current<br>exceeds over-current                                                                                                             | <ul> <li>Check whether the motor is and its lines are short circuit, grounded or too long;</li> <li>Check whether the input voltage is relatively low;</li> <li>Delay the acceleration time</li> <li>Conduct parameter identification or improve low frequency torque compensation or adjust V/F Curve;</li> <li>Check whether the load has mutation;</li> <li>Check whether it is to select speed tracking or start after the motor stops stably;</li> <li>Check whether the rated power of the motor or frequency inverter is large enough;</li> </ul> |
| Err03         | Over-current<br>at<br>deceleration   | When the frequency inverter<br>decelerates, output current<br>exceeds over-current                                                                                                             | <ul> <li>Check whether the motor is and its lines are short circuit, grounded or too long;</li> <li>Conduct parameter identification</li> <li>Delay the deceleration time;</li> <li>Check whether the input voltage is relatively low;</li> <li>Check whether the load has mutation;</li> <li>Install additional brake unit and brake resistance;</li> </ul>                                                                                                                                                                                             |
| Err04         | Over-voltage<br>at constant<br>speed | When the frequency inverter runs<br>at constant speed, DC voltage of<br>the main circuit exceeds this set<br>value.<br>Detected DC over-voltage value:<br>Level S2/T2 : 400V<br>LevelT4 : 800V | <ul> <li>Check whether the input voltage is too high;</li> <li>Check whether the bus voltage display is normal;</li> <li>Check whether the motor is dragged to run by external force in the running process;</li> </ul>                                                                                                                                                                                                                                                                                                                                  |

| Fault<br>display | Description                                                                          | Details                                                                                                                                                                      | Fault elimination                                                                                                                                                                                                                                                                                                                              |
|------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Err05            | Over-voltage<br>at acceleration                                                      | When the frequency inverter runs at<br>constant speed, DC voltage of the<br>main circuit exceeds this set value.<br>The detected over-voltage value is<br>the same as above. | <ul> <li>Check whether the input voltage is too high;</li> <li>Check whether the bus voltage display is normal;</li> <li>Delay the deceleration time;</li> <li>Check whether the motor is dragged to run by external force in the process of deceleration;</li> <li>Install additional brake unit and brake resistance;</li> </ul>             |
| Err06            | Over-voltage<br>at deceleration                                                      | When the frequency inverter runs at<br>constant speed, DC voltage of the<br>main circuit exceeds this set value.<br>The detected over-voltage value is<br>the same as above. | <ul> <li>Check whether the input voltage is too high;</li> <li>Check whether the bus voltage display is normal;</li> <li>Delay the deceleration time;</li> <li>Check whether the motor is dragged to run by external force in the process of deceleration;</li> <li>Install additional brake unit and brake resistance;</li> </ul>             |
| Err08            | Under-voltage                                                                        | Under-voltage in the main circuit,<br>check the electric level:<br>Detected DC under-voltage value:<br>Level S2/ T2 : 200V*P0.2.05/100<br>Level T4 : 350V*P0.2.05/100        | <ul> <li>Check the lines of supply power contact well;</li> <li>Check whether the incoming voltage is within regulated scope;</li> <li>Check whether there is momentary interruption;</li> <li>Check whether the display of the bus voltage is normal;</li> <li>Check whether the setting bridge and charge resistance are normal;</li> </ul>  |
| Err09            | Err09 Frequency<br>inverter<br>overloaded Motor and current exceed the rated<br>load |                                                                                                                                                                              | <ul> <li>Check whether the motor is in locked-rotor conditions or the load to motor needs to be reduced;</li> <li>Replace the frequency inverter with larger power;</li> </ul>                                                                                                                                                                 |
| Err10            | Motor<br>overload                                                                    | Motor and current exceed the rated current                                                                                                                                   | <ul> <li>Check the protection parameter P1.0.25<br/>Reference of the motor is proper;</li> <li>Check whether the motor is in<br/>locked-rotor conditions or the load to motor<br/>needs to be reduced;</li> <li>Correctly preset the rated current of the<br/>motor;</li> <li>Replace the frequency inverter with<br/>larger power;</li> </ul> |
| Err11            | Missing phase                                                                        | Error of missing phase or<br>unbalanced three phases                                                                                                                         | <ul> <li>Check main circuit voltage whether it is missing phase or unbalanced three phases</li> <li>Check whether the connecting terminal is loosing.</li> <li>Seek technical support</li> </ul>                                                                                                                                               |

| Fault<br>display | Description                              | Details                                                                                                   | Fault elimination                                                                                                                                                                                                                                                                                                                          |
|------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Err12            | Output Default<br>Failure                | Output Default Failure or<br>3-phase Imbalance Fault                                                      | <ul> <li>Check whether the output circuit has output default failure or 3-phase imbalance fault</li> <li>Check whether the wiring terminals are loose</li> <li>Seek technical support</li> </ul>                                                                                                                                           |
| Err13            | External Fault                           | Fault caused by External<br>Control Circuits                                                              | <ul> <li>Check the signal input circuit of external fault</li> <li>Reset Run</li> </ul>                                                                                                                                                                                                                                                    |
| Err14            | Abnormal<br>Communication                | Abnormity for<br>communication of<br>frequency inverter and other<br>equipments                           | <ul> <li>Check external communication lines</li> <li>The upper computer doesn't work normally</li> <li>The setting for communication parameter is not correct</li> <li>The communication protocol is inconsistent</li> </ul>                                                                                                               |
| Err15            | Frequency<br>inverter<br>Overheat        | Radiator temperature ≥ oh<br>Detection Value (about 80°C,<br>from temperature switch)                     | <ul> <li>Check the running state of the fan and ventilation state</li> <li>Check whether the surrounding temperature is too high and the cooling measures are required to be taken;</li> <li>Check whether the thermistor or temperature switch is damaged;</li> <li>Clear the dirt on the exterior of radiator and air intake;</li> </ul> |
| Err17            | Motor-to-groun<br>d short circuit        | Motor-to-ground short circuit                                                                             | • Check whether the output line or motor of the frequency inverter has ground short circuit                                                                                                                                                                                                                                                |
| Err18            | Motor<br>Identification<br>Error         | When conducting the parameter identification, the fault occurs in motor                                   | <ul> <li>Check whether the motor parameter is consistent with the nameplate of the motor</li> <li>Whether the frequency inverter and main cable of the motor are connected well;</li> </ul>                                                                                                                                                |
| Err19            | Motor Off-load                           | Refer to the value of running<br>current less than off-load<br>current P6.1.19 and duration<br>of P6.1.20 | <ul> <li>Check whether the load separates;</li> <li>Check whether the value set by Parameter P6.1.19 and P6.1.20</li> </ul>                                                                                                                                                                                                                |
| Err20            | PID Feedback<br>Loss                     | Refer to the value of PID<br>feedback value less than<br>value of P4.0.18 and<br>duration of P4.0.19      | <ul> <li>Check whether PID Feedback Signal is normal</li> <li>Check whether the value set by Parameter P4.0.18</li> <li>and P4.0.19 meets actual running conditions;</li> </ul>                                                                                                                                                            |
| Err21            | User-Defined<br>Fault 1                  | Fault 1 Signal given by the<br>users through<br>multi-functional terminals or<br>PLC Programming Function | • Check whether the User-Defined Fault 1 is removed and then run after reset;                                                                                                                                                                                                                                                              |
| Err22            | User-Defined<br>Fault 2                  | Fault 2 Signal given by the<br>users through<br>multi-functional terminals or<br>PLC Programming Function | • Check whether the User-Defined Fault 2 is removed and then run after reset;                                                                                                                                                                                                                                                              |
| Err23            | Accumulative<br>Power-on Time<br>Arrival | Refer to the time given by<br>accumulative power-on time<br>arrival P5.1.01 of the<br>frequency inverter  | • Use the parameter initialization function to clear the record information                                                                                                                                                                                                                                                                |
| Err24            | Accumulative<br>Running Time<br>Arrival  | Refer to the time given by<br>accumulative power-on time<br>arrival P5.1.00 of the<br>frequency inverter  | • Use the parameter initialization function to clear the record information                                                                                                                                                                                                                                                                |

Chapter 9 Fault Handling

| Fault display           | Description                          | Details                                                                                                                   | Fault elimination                                                                                                                                                                                  |
|-------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Err26                   | Parameter                            |                                                                                                                           | • Change main control panel                                                                                                                                                                        |
| Err27                   | Motor<br>Overheat                    | Detection on excessive<br>temperature of the motor                                                                        | <ul> <li>Check whether the temperature of the motor is too high;</li> <li>Check whether the temperature sensor is damaged or its wirings are loose;</li> </ul>                                     |
| Err31                   | Current<br>Detection<br>Fault        | Circuit fault after current detection                                                                                     | <ul> <li>Check whether the Hall device has defaults;</li> <li>Check whether the circuit has fault after detection of the driver board</li> <li>Check whether the driver board has fault</li> </ul> |
| Err33                   | Abnormity of<br>Current<br>Detection | Circuit fault after current<br>detection leads to abnormal<br>current detection value                                     | <ul> <li>Check whether the Hall device has defaults;</li> <li>Check whether the circuit has fault after detection of the driver board</li> <li>Check whether the driver board has fault</li> </ul> |
| Err34                   | Fast<br>Current-limiti<br>ng Timeout | The running current of the<br>frequency inverter continues to<br>be larger, which exceeds<br>allowable current–limit time | <ul> <li>Check whether the load is too large or is stalled;</li> <li>Check whether the size of the frequency inverter is too small;</li> </ul>                                                     |
| Err38                   | Output short circuit                 | 3-phase output inter-phase short circuit                                                                                  | • Check insulation of motor wire and motor                                                                                                                                                         |
| Err40                   | Buffer<br>Resistance                 | The bus voltage fluctuates strongly                                                                                       | <ul> <li>Check whether the contactor is normal</li> <li>Check the fluctuations of incoming voltage</li> </ul>                                                                                      |
| Internal<br>communicati |                                      | Internal communication is abnormal                                                                                        | <ul> <li>Check internal communication lines;</li> <li>Seek technical support</li> </ul>                                                                                                            |

### 9.2 Motor Fault and Exclusion Measure

If any of the faults below occurs to your motor, find out the causes and take corresponding corrective measures.

| Fault      | Tips for checking                                       | Corrective measures                              |  |  |  |
|------------|---------------------------------------------------------|--------------------------------------------------|--|--|--|
| Fault      | Tips for checking                                       | Switch on the power supply; switch it off and    |  |  |  |
|            | Has the power voltage been delivered to the             | on again; check power voltage; make sure the     |  |  |  |
|            | terminals R and S?                                      | terminal bolts have been tightened               |  |  |  |
|            | Measure the voltages of terminals U, V and W with       |                                                  |  |  |  |
| The        | a rectifier-type voltmeter. Are they right?             | Cut off power supply and switch it on again      |  |  |  |
|            | Has the motor been locked due to overload?              | Reduce load and lift the lock                    |  |  |  |
| motor      | Is there any fault information displayed on the         |                                                  |  |  |  |
| does not   | monitor of the operator?                                | Check the fault according to the table of faults |  |  |  |
| rotate.    | Has the instruction for forward or reverse rotation     |                                                  |  |  |  |
|            | been fed in?                                            | Check the wiring                                 |  |  |  |
|            |                                                         | Change the wiring, check the                     |  |  |  |
|            | Has the frequency-setting signal been fed in?           | frequency-setting voltage                        |  |  |  |
| I          | Has the running mode been set up correctly?             | Input the correct setup                          |  |  |  |
| The        | <b>X k k</b>                                            | Wire them to the lead wires U, V and W of the    |  |  |  |
| motor      | Is the wiring of terminals U, V and W correct?          | motor in accordance with the phase sequence      |  |  |  |
| rotates in |                                                         |                                                  |  |  |  |
| opposite   | Is the input signal connection right for the            | Change the wiring                                |  |  |  |
| direction  | forward/backward rotation?                              | 00                                               |  |  |  |
| The        | Is the wiring of the frequency reference circuit        |                                                  |  |  |  |
| motor      | correct?                                                | Change the wiring                                |  |  |  |
| rotates,   | Use the ensuration mode been connectly set up?          | Check the selected running mode with an          |  |  |  |
| but is     | Has the operation mode been correctly set up?           | operator                                         |  |  |  |
| incapable  |                                                         |                                                  |  |  |  |
| of speed   | Is the load too much?                                   | Reduce load                                      |  |  |  |
| changing.  |                                                         |                                                  |  |  |  |
| The        | Are the rated values (number of poles, voltage)         | Check the technical data on the nameplate of     |  |  |  |
| rotation   | right?                                                  | the motor                                        |  |  |  |
| speed      | Is the acceleration/deceleration gear shifting ratio of | Checking the shifting gears (like the gear       |  |  |  |
| (rpm/min)  | the gear wheel right?                                   | wheel and so on)                                 |  |  |  |
| of the     | Has the maximum output frequency been correctly         | Check the set value of the maximum output        |  |  |  |
| motor is   | set up?                                                 | frequency                                        |  |  |  |
| too high   | Check the voltage between the terminals of the          |                                                  |  |  |  |
| or too     | motor with a rectifier-type voltmeter. Is there too     | Check the V/F characteristic value               |  |  |  |
| low.       | much voltage drop?                                      |                                                  |  |  |  |
| The        | Is the load too much?                                   | Reduce load                                      |  |  |  |
| rotation   | Is the change of load too much?                         | Reduce load change, increase the motor           |  |  |  |
| speed      |                                                         | capacity of the frequency inverter               |  |  |  |
| (rpm/min)  |                                                         | Check the wiring of the 3-phase power supply     |  |  |  |
| of the     | What about the power supply. Is it a 3-phase or a       | for possible phase loss.                         |  |  |  |
| running    | single-phase one? If it is a 3-phase one, is there any  |                                                  |  |  |  |
| motor is   | phase loss?                                             |                                                  |  |  |  |
| unsteady   |                                                         |                                                  |  |  |  |

| Increatio      | Itama far                           |                                                                                                                                                            |              | 1            | -            |                                                                                                                                                                                                                 |                                                                                             |                                                        |
|----------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Inspectio<br>n | Items for inspectio                 | Description                                                                                                                                                | Dai          | Perio<br>Yea | a<br>Bien    | Inspection                                                                                                                                                                                                      | Criteria                                                                                    | Measuring                                              |
| location       | n                                   |                                                                                                                                                            | ly           | rly          | nial         | method                                                                                                                                                                                                          | Cintenia                                                                                    | instrument                                             |
|                | Surround<br>ings                    | Is there any dust?<br>Are the ambient<br>temperature and<br>humidity<br>appropriate?                                                                       | √            |              |              | See the precautions                                                                                                                                                                                             | Temperature:<br>-10~+40°C; no<br>dust;<br>humidity:<br>below 90%<br>and no dew<br>formation | Thermomete<br>r,<br>hygrometer<br>and a<br>recorder    |
| Exterior       | Equipme<br>nt                       | Is there any<br>abnormal<br>vibration or<br>noise?                                                                                                         | $\checkmark$ |              |              | Look, see                                                                                                                                                                                                       | No<br>abnormality                                                                           |                                                        |
|                | Input<br>voltage                    | Is the input<br>voltage of the<br>main circuit<br>normal?                                                                                                  | $\checkmark$ |              |              | Measure the<br>voltage between<br>the terminals R,<br>S and T                                                                                                                                                   |                                                                                             | Digital AVO<br>meter/ tester                           |
| en<br>op       | The<br>entire<br>operatin<br>g site | Megger<br>examination (of<br>the resistance<br>between the main<br>circuit and earth)<br>for any loosened<br>parts.<br>Overheat on any<br>parts?<br>Clean? |              | $\checkmark$ |              | Disconnect the<br>frequency<br>inverter,<br>Short-circuit the<br>terminals R, S,<br>U, V, W and<br>measure the<br>resistance<br>between them<br>and the earth.<br>Tighten the bolts<br>Check with<br>naked eyes | Over 5 MΩ<br>and fault free                                                                 | DC<br>500V-type<br>megger                              |
|                | Conduct<br>or wiring                | Conductor rusty?<br>Wire sheath<br>damaged?                                                                                                                |              | $\checkmark$ |              | Check with naked eyes                                                                                                                                                                                           | No fault                                                                                    |                                                        |
| Main           | Terminal<br>s                       | Any damage?                                                                                                                                                |              | $\checkmark$ |              | Check with naked eyes                                                                                                                                                                                           | No Fault                                                                                    |                                                        |
| Circuit        | IGBT<br>module /<br>diode           | Check the<br>impedance<br>between<br>terminals                                                                                                             |              |              | $\checkmark$ | Disconnect the<br>frequency<br>inverter, and<br>measure with a<br>tester the<br>resistance<br>between the<br>group of R, S,<br><-> +, - and the<br>group of U, V, W<br><-> +, -<br>respectively                 |                                                                                             | Digital AVO<br>meter /<br>analog<br>measuring<br>meter |
|                | Insulatio<br>n<br>resistanc<br>e    | Megohmmeter<br>inspection<br>(between output<br>terminal and<br>grounding<br>terminal)                                                                     |              |              |              | Release<br>connection of U,<br>V and W and<br>fasten motor wire                                                                                                                                                 | Exceed 5MΩ                                                                                  | 500V type<br>megohmmet<br>er                           |

**Appendix 1 Regular Maintenance and Inspection Methods** 

| <b>T</b>                                        | Items for                          |                                                                                                                                                                         |                                  | Period       |              |                                                                                                                                         |                                                                                                       |                                                            |
|-------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Inspection<br>location                          | inspectio<br>n                     | Description                                                                                                                                                             | Dail<br>y                        | Yearl<br>y   | Biennia<br>1 | Inspection method                                                                                                                       | Criteria                                                                                              | Measuring instrument                                       |
|                                                 | Filter<br>capacitor                | Is there any<br>liquid<br>seepage? Is the<br>safety hole<br>bulging out?<br>Is the capacitor<br>bulging out?                                                            | $\checkmark$                     | V            |              | Check with naked<br>eyes<br>Measure with<br>capacitance<br>meters and no<br>fault is found                                              | Exceed<br>85% of the<br>rated<br>capacity                                                             | Devices for<br>measuring<br>capacitance                    |
| Main<br>Circuit                                 | Relay                              | Any wobbling<br>noise during<br>operation? Any<br>damage to the<br>contacts?                                                                                            |                                  | $\checkmark$ |              | Listen<br>Check with naked<br>eyes.                                                                                                     | No fault                                                                                              |                                                            |
|                                                 | Resistanc<br>e                     | Whether<br>resistance<br>insulation is<br>damaged<br>Whether<br>resistor wire is<br>damaged (open<br>circuit)                                                           |                                  | V            |              | Visual inspection<br>Disconnect one<br>and measure it<br>with test<br>instrument.                                                       | There is no fault<br>Error must<br>be within $\pm 10\%$ of<br>resistance<br>value                     | Digital<br>multimeter/s<br>imulation<br>test<br>instrument |
| Protection<br>circuit and<br>control<br>circuit | Operatio<br>n check                | Is the output<br>voltage<br>balanced for<br>all the phases?<br>After<br>executing<br>sequential<br>protection,<br>there should be<br>no fault in the<br>display circuit |                                  | $\checkmark$ |              | Measure the<br>voltage among<br>terminals U, V<br>and W Short<br>circuit and open<br>frequency inverter<br>protection circuit<br>output | For 200V<br>model, the<br>difference<br>in the<br>voltage of<br>each phase<br>should not<br>exceed 4V | Digital AVO<br>meter/<br>calibrating<br>voltmeter          |
| Cooling<br>system                               | Cooling<br>fan                     | Any abnormal<br>vibration or<br>noise?<br>Any loosened<br>connections?                                                                                                  |                                  | V            |              | Turn the<br>tightening<br>connection of the<br>fan after<br>switching off the<br>power supply                                           | Rotation<br>smooth<br>and no<br>fault                                                                 |                                                            |
| Display                                         | Meter                              | Is the<br>displayed<br>value correct?                                                                                                                                   | $\checkmark$                     | $\checkmark$ |              | Check the reading<br>of the meter<br>outside the panel                                                                                  | Check the set values                                                                                  | Voltmeter/<br>ammeter                                      |
| Motor                                           | The<br>entire<br>operating<br>site | Any abnormal<br>vibration or<br>noise?<br>Any abnormal<br>smells?                                                                                                       | onormal<br>on or<br>√<br>onormal |              |              | Check with your<br>ears, nose, and<br>eyes;<br>Check for<br>overheat or<br>damage                                                       | No fault                                                                                              |                                                            |

# **Appendix 2 Guideline for Option of Optional Parts**

Users of this series product can choose to install additional peripherals in accordance with the operating conditions and needs.

### A2.1Alternative Current Reactor (ACL)

Alternative current reactor can be used to suppress the high-order harmonic of the input current from the frequency inverter, thus improve its power factors. It is recommended for the following situations:

- 1. The ratio of the capacity of the power source to that of the frequency inverter exceeds 10:1.
- 2. Silicon controlled load or power factor compensation devices with switch control is wired to the same power supply.
- 3. The 3-phase power has a high degree of voltage unbalance.  $(\geq 3\%)$

# Table of Matching Alternating Current Reactors:

| Power (kW) | Current (A) | Inductance (vH) | Power (kW) | Current (A) | Inductance (µH) |
|------------|-------------|-----------------|------------|-------------|-----------------|
| 0.4        | 2.0         | 4.6             | 1.5        | 7.0         | 1.6             |
| 0.75       | 4.0         | 2.4             | 2.2        | 10          | 1.0             |

### A2.2Radio noise filter

Radio noise filters are used to restrain the transmission of electromagnetic interfering noises generated by the frequency inverter. They can also be used to restrain interference with the motor from external radio, instantaneous impact and surges.

| Voltage Motor powe<br>V kW | Motor nowor     |              | Key filter parameters |             |           |                           |       |        |  |  |
|----------------------------|-----------------|--------------|-----------------------|-------------|-----------|---------------------------|-------|--------|--|--|
|                            | 1               | Filter model | Common                | n-mode inpu | t loss dB | Common-mode input loss dB |       |        |  |  |
|                            | K VV            |              | 0.1 MHz               | 1 MHz       | 30 MHz    | 0.1 MHz                   | 1 MHz | 30 MHz |  |  |
| 220                        | $0.4 \sim 0.75$ | DL-5EBT1     | 75                    | 85          | 55        | 55                        | 80    | 60     |  |  |
| 220                        | 1.5 ~ 2.2       | DL-10EBT1    | 70                    | 85          | 55        | 45                        | 80    | 60     |  |  |

Table of matching 3-phase 3-wire Radio Noise Filters:

In situations requiring stronger anti-radio interference capability or conformity to CE, UL, or CSA standards, or when there are devices with poor anti-interference capabilities in the vicinity, filters should be installed. While installing, make sure the wiring is as short as possible, that is, the filter should be as close to the frequency inverter as possible.

### A2.3Remote Operation Keyboard

Our series frequency inverters have all been equipped with operation keyboards, exquisitely designed and easily operated. If you wish to use it away from the frequency inverter or other places, an extended cable would serve the purpose. You just need to demand it when you place an order. Since the serial communication mode is employed to link the keyboard and the frame, you can remove the keyboard to work area as far as 10m away. Or if you want to or need to work father away, then you can buy a remote operation keyboard from the suppliers concerned, or from our company.

### A2.4Energy Consumption Brake Unit and Brake Resistance

The D200 series frequency inverter is equipped with built-in brake unit, if the brake torque is required to be increased, it is to directly connect the brake resistance.

### The formula for simple calculation for brake unit and brake resistance is as below:

Generally, the brake current is 1/2 I of the rated current of the motor, the generated brake torque is approximately equal to the rate torque of the motor. Therefore, proper brake current IB shall be selected based on requirements of load inertia and shutdown time. The greater the load inertia is, the shorter the shutdown time requires and the greater the selected brake current IB is.

$$IB = (1/2 \sim 3/2)*I$$

According to brake current, the value of resistance to brake unit and brake resistance can be selected. The peak current of the brake unit (only aim at brake unit of Delixi) is larger than IB.

Size of Brake Resistance Value

RB=U/IB (in S2 and T2 Series, U takes 400V; in T4 Series, U takes 800V)

Size of Brake Resistance Power

### PB=K\*U\*U/RB

In formula, K indicates braking coefficient with range of  $0.1 \sim 0.5$ , and the braking coefficient shall be selected based on requirements of load inertia and shutdown time. The greater the load inertia is, the shorter the shutdown time requires and the greater the selected braking coefficient K is. General load can select  $0.1 \sim 0.2$  and the large load inertia selects 0.5.

The following sizing table is available when IB is approximately equal to 1/2I and K is between 0.1~0.2. The greater the load inertia is, the shorter the shutdown time requires, and proper adjustment shall be made according to the formula above.

| Type of Frequency inverter | Type of Brake Unit                   | Brake Resistance<br>Value<br>(Ω) | Brake Resistance<br>Power<br>(W) |  |
|----------------------------|--------------------------------------|----------------------------------|----------------------------------|--|
| S2(single-phase 220V)      |                                      |                                  |                                  |  |
| CDI-D200G0R4S2B            | Built-in, allowable Max. Current 8A  | 400                              | 80                               |  |
| CDI-D200G0R75S2B           | Built-in, allowable Max. Current 8A  | 200                              | 160                              |  |
| CDI-D200G1R5S2B            | Built-in, allowable Max. Current 15A | 120                              | 250                              |  |
| CDI-D200G2R2S2B            | Built-in, allowable Max. Current 15A | 80                               | 400                              |  |
| CDI-D201G0R4S2B            | Built-in, allowable Max. Current 8A  | <mark>400</mark>                 | <mark>80</mark>                  |  |
| CDI-D201G0R75S2B           | Built-in, allowable Max. Current 8A  | <mark>200</mark>                 | <mark>160</mark>                 |  |
| CDI-D201G1R5S2B            | Built-in, allowable Max. Current 15A | <mark>120</mark>                 | <mark>250</mark>                 |  |
| CDI-D201G2R2S2B            | Built-in, allowable Max. Current 15A | <mark>80</mark>                  | <mark>400</mark>                 |  |
| T2(Three-phase 220V)       |                                      |                                  |                                  |  |
| CDI-D200G0R4T2B            | Built-in, allowable Max. Current 10A | 350                              | 160                              |  |
| CDI-D200G0R75T2B           | Built-in, allowable Max. Current 10A | 200                              | 160                              |  |
| CDI-D200G1R5T2B            | Built-in, allowable Max. Current 25A | 100                              | 250                              |  |
| CDI-D200G2R2T2B            | Built-in, allowable Max. Current 25A | 75                               | 400                              |  |
| CDI-D201G0R4T2B            | Built-in, allowable Max. Current 10A | <mark>350</mark>                 | <mark>160</mark>                 |  |
| CDI-D201G0R75T2B           | Built-in, allowable Max. Current 10A | <mark>200</mark>                 | <mark>160</mark>                 |  |
| CDI-D201G1R5T2B            | Built-in, allowable Max. Current 25A | <mark>100</mark>                 | <mark>250</mark>                 |  |
| CDI-D201G2R2T2B            | Built-in, allowable Max. Current 25A | <mark>75</mark>                  | <mark>400</mark>                 |  |

Appendix 10 EM60-IO4 Expansion Card

| T4(Three-phase 380V) |                                      |                  |                  |  |
|----------------------|--------------------------------------|------------------|------------------|--|
| CDI-D200G0R75T4B     | Built-in, allowable Max. Current 10A | 600              | 160              |  |
| CDI-D200G1R5T4B      | Built-in, allowable Max. Current 10A | 400              | 250              |  |
| CDI-D200G2R2T4B      | Built-in, allowable Max. Current 15A | 250              | 400              |  |
| CDI-D200G3R7T4B      | Built-in, allowable Max. Current 25A | 150              | 600              |  |
| CDI-D201G0R75T4B     | Built-in, allowable Max. Current 10A | <mark>600</mark> | <mark>160</mark> |  |
| CDI-D201G1R5T4B      | Built-in, allowable Max. Current 10A | <mark>400</mark> | <mark>250</mark> |  |
| CDI-D201G2R2T4B      | Built-in, allowable Max. Current 15A | <mark>250</mark> | <mark>400</mark> |  |
| CDI-D201G3R7T4B      | Built-in, allowable Max. Current 25A | <mark>150</mark> | <mark>600</mark> |  |